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A B S T R A C T   

Predictive models are traditionally used for the development and management of geothermal reservoirs. While 
field operation optimization based on physics-based simulations offers dependable strategies, simulation models 
require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As 
efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep 
learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high 
computation time. However, purely data-driven models that are trained using limited data often provide 
physically inconsistent predictions and fail to generalize beyond the training data. This has important conse
quences in optimization applications where, during optimization, the well control strategies are likely to fall 
beyond the training data. These limitations undermine the suitability and strength of data-driven models in 
scientific and engineering applications, where the amount of data is typically limited but physical laws are well- 
established and frequently used. To address the above challenges, we propose a novel physics-guided machine 
learning model by incorporating the general structure of the physics-based equations into deep learning models. 
A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize 
the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural 
network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent 
the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and 
demonstrate their connection to the underlying differential equations describing the fluid flow physics. We 
investigate the prediction performance of the proposed models by first applying them to controlled example to 
evaluate their extrapolation power, before using them with simulated and field datasets.   

1. Introduction 

Simulation models that can provide accurate long-term production 
predictions are traditionally used for production optimization of 
geothermal reservoirs. This task is commonly referred to as model-based 
optimization or model predictive control. While field operation opti
mization based on physics-based simulation offers reliable operation 
strategies, the simulation model requires reliable and detailed de
scriptions of reservoir conditions and properties and entails extensive 
computational efforts. As efficient alternatives, data-driven predictive 
models facilitate the implementation of complex iterative workflows 
that are computationally demanding to use with full the simulation 
model. In recent years, deep learning models have become increasingly 
popular in the subsurface flow domain for various tasks such as time- 

series production prediction (Tian and Horne, 2017; Gudmundsdottir 
and Horne, 2020; Jiang et al., 2021; Shi et al., 2021) and inverse 
modeling (Laloy et al., 2017; Razak and Jafarpour, 2020; Jiang & 
Jafarpour, 2021a, 2021b). Deep learning models are powerful in 
extracting complex statistical patterns from training data and using 
them to generate fast predictions based on the learned input-output 
relationships. However, purely data-driven deep learning models have 
their limitations. One major drawback of data-driven models is their 
limited ability to extrapolate beyond the training data (Karniadakis 
et al., 2021; Willard et al., 2021). 

Extrapolation involves using a model that is trained on an original 
training dataset to predict values outside the training data range. Time- 
series forecasting is a type of extrapolation where the implicit variable 
"time" is out of the training range, especially when the time-series output 
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has non-stationary behavior. Non-stationary time series can have sta
tistical properties, such as mean and variance, that change over time. In 
geothermal reservoirs, predicting a declining temperature (or enthalpy) 
is an extrapolation task. Therefore, predicting future production tem
perature trends based on historical data constitutes an extrapolation 
problem. 

Extrapolation can also commonly occur when the input variable to 
the reservoir model is high-dimensional, making it difficult to cover the 
entire range of input variability in the training data (Balestriero et al., 
2021). In optimization tasks, mass flow rate or bottom-hole pressure 
(BHP) can be high-dimensional, where each element represents the 
control variables of different wells over different time steps (Qin et al., 
2023). Another example if high-dimensional problems is inverse 
modeling or uncertainty quantification tasks, where uncertain reservoir 
properties (e.g., permeability map) are inherently high-dimensional, 
and pose a challenging extrapolation problem. Generating more 
training samples could alleviate the extrapolation issue related to 
high-dimensional learning. However, unlike the vast amount of acces
sible data in computer science applications, data in scientific and engi
neering applications is limited due to the cost of sampling in the field 
and time-consuming simulation that needs to be run to generate labeled 
(simulated) data. 

In geothermal reservoir engineering, conventional predictive models 
that are based on dynamic production history include numerical reser
voir simulation and lumped-parameter models (Ciriaco et al., 2020). 
While numerical simulation models provide reliable predictions, their 
high runtime makes them prohibitive for complex iterative workflows, 
such as optimization, inverse modeling, and uncertainty quantification. 
Lumped parameter models leverage the physics of the subsurface system 
but are built based on a coarsely discretized grid system and/or 
simplified governing equations (Axelsson, 1989; Alkan and Satman, 
1990; Sarak et al., 2005; Tureyen and Akyapı, 2011). These models 
typically contain a smaller number of homogeneous grid blocks and 
provide faster predictions compared to high-fidelity simulation models. 
Similar works in the petroleum domain include the 
capacitance-resistance model (CRM) (Yousef et al., 2006; Holanda et al., 
2018) and methods that resemble streamline models, such as the 
Flow-Network model (Lerlertpakdee et al., 2014) and interwell numer
ical simulation model (INSIM) (Zhao et al., 2015, 2016). Predictive 
models with simplifications are typically referred to as physics-based or 

reduced-physics proxy (or surrogate) models. 
Proxy models are designed to provide fast predictions at the cost of 

marginal reduction in accuracy/fidelity. They are often built to replace 
high-fidelity reservoir simulation in computationally complex work
flows. Proxy models can be classified into data-driven (statistical), 
reduced-physics, and reduced-order approaches (Zubarev, 2009; Asher 
et al., 2015). Linear regression method and its extensions, as a common 
type of data-driven proxy model, have been applied to a wide range of 
applications for geothermal energy, such as well placement (Chen et al., 
2015; Schulte et al., 2020), field operation optimization, and resource 
assessment (Quinao and Zarrouk, 2018). In recent years, deep learning 
models, as a more powerful data-driven predictive approach, have been 
increasingly applied to the prediction of production trends in subsurface 
flow systems. Recurrent neural networks (RNNs), as variants of neural 
networks (NN), are commonly used for predicting sequences of 
dynamical time-series data. RNNs have been applied to the geothermal 
domain for production performance prediction (Tian and Horne, 2017; 
Jiang et al., 2021; Shi et al., 2021) and tracer concentration prediction 
(Gudmundsdottir and Horne, 2020). The long short-term memory 
(LSTM) model (Hochreiter and Schmidhuber, 1997), as a popular 
variant of RNN, has also been used for the oil production prediction in 
the waterflooding problem (Kim and Durlofsky, 2021; Kim et al., 2022). 

Purely data-driven models, including deep learning models, typically 
suffer from the limitations of extensive data requirements and poor 
generalizability beyond training data. These limitations undermine their 
suitability and strength in scientific and engineering applications, where 
well-established physical laws are frequently used. Anactive research 
area to improve the predictive power of data-driven models is the 
integration of physical principles and domain knowledge into neural 
networks (Karniadakis et al., 2021; Willard et al., 2021). A typical 
approach to incorporating the physics in a soft manner is embedding 
physical equations into the loss function of NNs during training to 
regularize the trainable parameters. Representative examples include 
the deep Galerkin method (DGM) (Sirignano and Spiliopoulos, 2018) 
and the physics-informed neural network (PINN) (Raissi et al., 2019). In 
the DGM and PINN, the solution f(t, x) of the partial differential 
equation (PDE) is approximated as a deep neural network (DNN) model. 
The learning of the system is treated as an optimization problem where 
the objective function includes the mismatch losses and the residual 
errors of the PDE, boundary, and initial conditions. The PINN provides a 
flexible implementation for different physical systems and has been 
applied in the subsurface domain as the proxy model (Zhu et al., 2019; 
Wang et al., 2020). The emerging field of physics-informed machine 
learning (PIML) has shown promise in enhancing traditional numerical 
solvers for various scientific problems (Markidis, 2021; Cuomo et al., 
2022). However, when it comes to applying PINN to the subsurface 
domain, there are certain challenges that need to be addressed. Specif
ically, the applicability of the PIML framework to high-dimensional data 
and more heterogeneous problems is still a concern (Muther et al., 
2023). Furthermore, this approach requires known physical equations 
and does not explore the interpretability of the architecture of the neural 
network. 

Fig. 1. Illustration of (a) time-series input and output and (b) an example of the training sample. The training sample is obtained by slicing the historical input XH 

and output YH, and consists of control variables Xt and initial states yt as the input to the deep learning model, and the future states Yt as the label. The tensors 
within the red block in (a) refer to a single training sample shown in (b) 

Table 1 
Summary of hyperparameters for different experimental cases.   

Training Set 
(Time Step) 

Validation Set 
(Time Step) 

Testing Set 
(Time Step) 

Learning 
Rate 

Test Cases 1400 100 2500 0.0035 
Simulated 

Temperature 
150, 250, 
350, 450, 
550 

50 455, 555, 
655, 755, 
855 

0.005 

Simulated BHP 250, 350, 
450, 550 

50 455, 555, 
655, 755 

0.005 

Field Case 1050 50 1000 0.0005  
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Another fit-for-purpose approach is to design specialized NN archi
tectures that implicitly embed physical knowledge by specifying node 
connections. By capturing physical dependencies among variables, the 
resulting architectures can efficiently learn PDEs or Ordinary Differen
tial Equations (ODEs). The Residual Neural Network (ResNet) (He et al., 
2016) is an example that builds the connection between deep learning 
models and numerical schemes of ODEs (E, 2017; Lu et al., 2018). The 
ResNet can be seen as the forward Euler discretization of ODEs (E, 
2017). Lu et al. (2018) extend this work by linking other ResNet-type 
models to different numerical schemes of ODEs, such as Runge-Kutta 
schemes. The ResNet is also presented in a recurrent way to make pre
dictions for multiple time steps (Qin et al., 2019). Another approach 
links convolutional neural networks (CNNs) with the finite difference 
stencil for the discretization of spatial derivatives (Long et al., 2018, 
2019; Ruthotto and Haber, 2020). In their works, CNNs are built within 
ResNet architectures and designed to approximate PDEs. The above 
approaches can be approximately interpreted as ODEs and PDEs with 
little or no modification to the original architectures. Recent studies 
have modified architectures of RNNs based on domain knowledge with 
different scales of modification. For example, Sun et al. (2020) embed 
physical equations into an RNN unit for seismic inverse problems. Daw 
et al. (2020) modify the LSTM model to preserve the physical constraint 
for lake temperature modeling (i.e., monotonically decreasing behavior 
in temperature). Jiang et al. (2023) introduce a multiscale RNN model 
for extrapolating geothermal energy production time-series data. They 
train a two-part neural network model to capture long-term and 
short-term trends separately and use an output layer that combines the 
two parts to forecast energy production. 

In this work, we propose two physics-guided RNN models to make 
fast and accurate long-term predictions using only historical data. The 
proposed models take well control variables (i.e., mass flow rate) as 
input and predict the production performance of wells (i.e., temperature 
and BHP), rather than the entire response of the reservoir. The input- 
output model reduces the dimension of features to learn and therefore 
requires fewer training samples. The proposed models are designed as 
variants of the RNN and gated recurrent unit (GRU) (Cho et al., 2014) by 
incorporating the numerical temporal discretization of the unknown 
physical equation. The proposed physics-guided RNNs are applied to 
handle two different types of extrapolations. In the first type, the output 
has a decreasing trend along the timeline and is non-stationary. In the 
second type of extrapolation, the input variable in the test set is outside 
the range seen by the data-driven model in the training set. In this paper, 
we demonstrate that by introducing modifications to the architectures of 
RNN and GRU to reflect the general form of the governing equations of 
the system, physics-guided RNNs can address both types of extrapola
tion problems. The integration of physics enables physics-guided RNNs 

to efficiently learn the dynamics from historical data and make more 
accurate long-term predictions over the lifetime of the geothermal 
reservoir project. Compared with physics-guided RNNs, the traditional 
RNN and GRU models cannot extrapolate the out-of-distribution inputs 
or outputs due to the nature of statistical learning and lack of causality. 

In the remainder of this paper, we present the physics-guided RNNs 
in detail and demonstrate their connections to the physical equations. 
We investigate the extrapolation performance by first applying the 
models to a test case where the first type of extrapolation is considered. 
To investigate the second type of extrapolation, we also apply the 
physics-guided RNNs to a simulated dataset generated by a field-scale 
geothermal reservoir models. For the simulated temperature data, we 
compare the prediction results with a physics-based proxy model from 
our previous work (Qin et al., 2022). Lastly, we apply the proposed 
physics-guided RNNs to real field data to investigate their suitability for 
practical applications. 

2. Methodology 

2.1. Problem statement 

We start by defining the problem statement, including the descrip
tion of the input and output variables, as well as the relevant notations 
used throughout the paper. For a geothermal reservoir with Nprod pro
duction wells and Ninj injection wells, the task is to predict the produc
tion temperature or BHP (output variables) based on the mass flow rate 
of production and injection wells (input variables). The data-driven 
predictive model serves as an input-output model and is formulated as 
y = f(x), where f(⋅) is the predictive model, and x and y are the input 
and output variables, respectively. Specifically, the input and output 
variables over NT time steps are represented as multivariate time-series 
data, i.e., X ∈ RNx×NT and Y ∈ RNy×NT , where X and Y are the normal
ized (0-1 min-max normalization) values of the mass flow rate and 
temperature (or BHP), respectively. The notations Nx and Ny denote the 
number of input and output variables, respectively. In our examples, we 
have Nx = Nprod + Ninj and Ny = Nprod for temperature (or Ny = Nprod +

Ninj for BHP). 
The time-series data {X, Y} from a geothermal reservoir are used to 

train and test the recurrent neural network (RNN) as a deep learning- 
based predictive model. The model architecture accommodates phys
ics constraints, as discussed in Section 2.2. The data sequence consists of 
NT total time steps with a fixed time interval. The first NT0 time steps of 
data are treated as historical data and used to generate training and 
validation sets. The remaining NT1 time steps of data points are treated 
as future data and are used as testing set to investigate the long-term 
prediction performance of the model. The historical data {XH, YH} is 

Fig. 2. Illustration of the skip connection in (a) ResNet and (b) the proposed RNN model. (a) is the vanilla ResNet, where the skip connection (also called identity 
mapping) is first introduced. (b) is a general form of RNN-type variants, which is combined with skip connection. 
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split into a set of samples for training and validating. As illustrated in 
Fig. 1, each sample consists of the following: input control variables Xt =

xt+1:t+Nt ∈ RNx×Nt , input initial states yt ∈ RNy× 1, and output labels Yt =

yt+1:t+Nt
∈ RNy×Nt , where the subscript t denotes an arbitrary time step, 

and Nt is the prediction window for the RNN-type predictive model 
during training. During testing, the entire sequence of future input 
control variables XF, together with an initial state yT0

, are provided as 
the input to the trained model. The predictive model makes predictions 
over the time horizon with a length of NT1 without taking any newer 
ground-truth label as initial state. The predicted output ŷ from the 
previous step is provided to the current step as the new initial state yt 
until the end of the prediction horizon. For the experiments in this 
paper, the hyperparameters for training the predictive models, such as 
the learning rate and the number of time steps for the training, valida
tion, and testing sets, are presented in Table 1. 

2.2. Physics-guided deep learning model 

We present the proposed physics-guided deep learning model in this 
section. Specifically, the architectures of the proposed deep learning 
models are designed as variants of RNNs to accommodate the physical 
constraints. We describe the details of the RNN models, including the 
standard RNN and GRU models. The connection between deep learning 
models and physical equations is then explained, followed by a 
description of the physics-guided RNN. 

2.2.1. Gated recurrent unit 
RNN is a class of neural networks designed to predict sequential data 

with temporal/dynamic behavior. RNNs have recurrent connections 
between the internal hidden states to process temporal sequences with 
arbitrary lengths. As common variants of RNN models, LSTM and GRU 
are designed to enhance the dependence on past states through gate 
mechanisms and by regulating the information flow. Therefore, GRU 
and LSTM typically outperform the regular RNN due to their complex 
architecture and the resulting higher learning capacity. Furthermore, 
GRU has shown comparable performance with LSTM (Chung et al., 
2014), and better performance for small datasets (Yang et al., 2020). In 
this work, we only describe the standard RNN and GRU models that are 
used in developing our physics-guided RNNs. 

For each time step t, a GRU unit receives the current input xt ∈

RNx× 1 and the pervious hidden state ht− 1 ∈ RNh× 1 to generate the 
updated hidden state ht through linear transformations, element-wise 
nonlinearities (through activation functions), and gate mechanisms. 
The superscript Nh denotes the dimension of the hidden state. The in
ternal gate mechanism of a GRU unit consists of two gates, i.e., reset gate 
rt ∈ RNh× 1 and update gate zt ∈ RNh× 1. The reset gate chooses the 
proportion of the past information it needs to remember in the candidate 
hidden state h̃t ∈ RNh× 1 and is defined as 

rt = σ(Wrxt +Urht− 1 + br), (1)  

where σ(⋅) is the element-wise sigmoid activation function that scales 
the vector rt to be between (0, 1). The time-invariant weight and bias 
terms have the following dimensions, Wr ∈ RNh×Nx , Ur ∈ RNh×Nh , and 
br ∈ RNh× 1. The update gate determines how the current state ht is 
selected in the range spanned by the previous hidden state ht− 1 and the 
candidate hidden state h̃t. Mathematically, the update gate can be 
expressed as 

zt = σ(Wzxt +Uzht− 1 + bz), (2)  

where Wz ∈ RNh×Nx , Uz ∈ RNh×Nh , and bz ∈ RNh× 1. The candidate hidden 
state ̃ht for updating the new state is determined by integrating the reset 
gate rt with past information ht− 1, as well as the current input xt: 

h̃t = tanh(Wxt +U(rt∘ht− 1)+ b), (3)  

where W ∈ RNh×Nx , U ∈ RNh×Nh , and b ∈ RNh× 1; the symbol ∘ is the 
element-wise product operator; tanh is the element-wise hyperbolic 
tangent activation function that scales the vector h̃t to be between (-1, 
1). The standard form of RNN can be represented as ht = tanh(Wxt +

Uht− 1 + b), which resembles Eq. (3), except for the reset gate rt . Hence, 
the candidate hidden state itself can be viewed as a variant of RNN with 
a gate mechanism to selectively pass the information. The vector h̃t 
partly contributes to updating the new hidden state ht, which is defined 
as 

ht = zt∘ht− 1 + (1 − zt)∘h̃t. (4) 

Fig. 3. Illustration of the unfolded representation of two physics-guided deep learning models: (a) physics guided GRU (phy-GRU) and (b) physics guided 
RNN (phy-RNN). 
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The update gate zt contains the weights used to linearly combine ht− 1 

and h̃t. When zt approaches 1, the new hidden state ht is close to the 
previous state ht− 1, and vice versa. Therefore, one can view the GRU as 
an RNN with two gates to 1) selectively pass the information (i.e., reset 
gate) and 2) introduce an additional update (weighted average) for the 
current state (i.e., update gate). 

2.2.2. Skip connection and differential equation 
Residual Network (ResNet) was originally proposed for image 

recognition in the computer science domain (He et al., 2016). The re
sidual block of ResNet (Fig. 2(a)) has a skip connection to keep features 
in different layers in the same scale and to avoid gradient vanishing (Lu 
et al., 2018). The skip connection, also known as identity mapping, 
preserves the input features and transfers them to the next operation. 
Each residual block is represented as yl+1 = F θl (yl)+ yl, where yl is the 

input feature to the l-th layer and F θl (⋅) is the neural network operation 
with the weights θl. The input feature yl is sent to the (l+1)-th layer 
through the skip connection. Each residual block can be viewed as a 
forward Euler discretization step for the ODEs (E, 2017). Given an initial 
state y0, the initial value problem (IVP) over the prediction horizon t ∈
(0, T] can be defined as 

dy
dt

= f (t, y), for t ∈ (0, T]

y(0) = y0.

(5) 

The forward Euler discretization of the differential equation with a 
step size Δtn is then derived as 

yn = yn− 1 + Δtn⋅f (tn, yn), (6)  

where tn and yn denote the time and solution of the n-th step, respec

Fig. 4. Visualization of the toy example with different trends. The first row represents the input sequences over 2000 and 4000 steps, respectively. The output 
sequences (from 2nd to 4th rows) cover the first 2000 steps on the left column, and 4000 steps on the right column. The prediction (green dots) is generated by 
phy-GRU model. 
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tively. Here, we use the subscript n to represent each time step in the 
physical problem statement (to avoid confusion with the time notation t 
used in statistical problems, e.g., GRU model description). Hereafter, we 
use the subscript n for the physical problem and t for the statistical 
problem description. The term Δtn⋅f(tn, yn) can be approximated by the 
neural network F θl (⋅), with the layer index l representing the time step 
n. The structure of F θl (⋅) is not specified and can be any fit-for-purpose 
NN, such as fully connected NN and convolutional filters. A recursive 
way of using the ResNet can be applied to solve yn for any arbitrary step. 
The weights of each residual block in the ResNet can either be shared or 
remain independent of other blocks (Qin et al., 2019). 

In this work, the problem is slightly different from the above initial 
value problem due to the additional input variables to the dynamical 
system. In our previous work (Qin et al., 2022), we simplify the 
PDE-based dynamical system for temperature prediction to take the 
form 

∂y
∂t

= f (t, x, y), (7)  

where x is the well control (i.e., mass flow rate). The function f(⋅) con
sists of different sources of temperature decline, such as conduction, 
sink/source term, and convection. For the step n, the explicitly dis
cretized form of Eq. (7) is expressed as 

yn = yn− 1 + Δtn⋅f (tn, xn, yn− 1). (8) 

To approximate the numerical discretization, we modify the archi
tecture of the residual block by adding additional input variables. The 
resulting architecture of the predictive model as a variant of RNN is 
presented in Fig. 2(b). The term Δtn f(tn, xn, yn− 1) is approximated by 
the function F θ(xt ,ht− 1) with the trainable weights θ, leading to the 
mathematical representation 

ht = ht− 1 + F θ(xt,ht− 1), (9)  

where we replace the notation yn with ht for consistency with the rep
resentation of RNN in the previous section. The weight-sharing property 
of RNN implies that the weights θ for any time step n are fixed. Hence, an 
implicit assumption is that the step size Δtn in Eq. (8) is also fixed. 

2.2.3. Physics-guided RNNs 
We now introduce two physics-guided deep-learning models with 

different architectures for the function F θ(xt , ht− 1). The overall archi
tecture takes the form of RNN-type deep learning models and merges the 
skip connection with RNNs. The first physics-guided deep learning 
model (Fig. 3a) is designed based on the architecture of GRU and is 
named physics-guided GRU (phy-GRU). By removing the update gate zt 
in Eq. (4), we can convert the GRU to the RNN variant with a skip 
connection. The difference between phy-GRU and standard GRU is in the 

Fig. 5. The testing RMSEs for three different data-driven predictive models for long-term predictions in the toy examples. The RMSE values are calculated over the 
last 1500 time steps, during which the output and predictions are re-normalized (re-scaled). 

Fig. 6. Temperature distribution for the main fault zones in the physics-based simulation model of the field-scale geothermal reservoir. The main fault zones are 
named Fault Zone 1, Fault Zone 2, Middle Zone, and Fault Zone 3, from West to East, respectively. 
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last step by converting Eq. (4) to 

ht = ht− 1 + δt⋅zt∘h̃t, (10)  

where the general form of neural network F θ(xt ,ht− 1) is represented as 
δt⋅zt∘h̃t. The notation δt ∈ R1 is a scalar trainable parameter denoting the 
time interval. The mathematical form of zt and h̃t remain the same as in 
GRU [i.e., Eqs. (2) and (3)]. After removing the multiplier zt in front of 
ht− 1, Eq. (10) serves as a residual block with external input vector xt. For 
conciseness, the multiplier of ̃ht is changed from 1− zt (Eq. (4)) to zt (Eq. 
(10)). The new zt is not an update gate anymore as it is not used to 
calculate the weighted average of ht− 1 and h̃t. 

The second physics-guided deep learning model (Fig. 3b) is designed 
to introduce the skip connection into RNN and is named physics-guided 
RNN (phy-RNN). In this section, we will explore the connection between 
phy-RNN and a simplified physical equation known as the lumped 
parameter model in the literature. The lumped parameter model consists 
of multiple tanks and a matrix of connections that denotes the 
communication among tanks. Each tank represents a certain area of the 
geothermal reservoir of which the average geological properties are 
assigned to the tanks (porosity, permeability, etc.). For generalized 
lumped parameter models, the relationship between the input control 
and output drawdown is expressed as (Sigurdardottir et al., 2015; Li 
et al., 2017) 

K
∂d
∂t

= S d + d∞⋅σ∞ + m, (11)  

where K ∈ RT×T and S ∈ RT×T represent the storage capacity and 
conductance matrix for the tanks with dimension T, respectively; d ∈

RT× 1 and m ∈ RT× 1 denote the output drawdown and input control 

vectors, respectively; d∞ ∈ R1 stands for the drawdown for infinite 
recharge source (treated as a fixed parameter); σ∞ ∈ RT× 1 is the 
conductance vector between the tanks and an infinite recharge source. 
Eq. (11) can be discretized using an explicit method as follows: 

dt = dt− 1 + Δt⋅(Wddt− 1 +Wmmt + b), (12)  

where Wd = K− 1S, b = K− 1d∞σ∞, and Wm = K− 1. The diagonal matrix 
K is positive definite and invertible. The second term on the right-hand 
side (RHS) of Eq. (12) resembles the standard RNN equation 

ht = tanh(Whht− 1 +Wxxt + b), (13)  

where ht− 1 and xt represent terms dt− 1 and mt, respectively. The first 
term dt− 1 on the RHS of Eq. (12) acts as the identity mapping (or skip 
connection) in the ResNet. Mathematically, phy-RNN can be represented 
as 

ht = ht− 1 + δt⋅tanh(Whht− 1 +Wxxt + b), (14) 

Both phy-GRU and phy-RNN are designed to merge the concept of 
skip connections with regular RNNs to accommodate the physical con
straints introduced by the finite difference scheme. However, the cor
responding architectures of F θ(xt ,ht− 1), which are used to approximate 
the physical mapping Δt⋅f(⋅), are different. The phy-GRU model adopts 
the main structure of the standard GRU, whereas the phy-RNN follows 
the equations in lumped parameter modeling and resembles the stan
dard RNN. The differences in the F θ(xt , ht− 1) architecture lead to 
different behaviors in the two models. For example, the output from 
phy-RNN is more sensitive to the input control xt since it has a shallower 
and simpler NN, whereas the phy-GRU typically provides smoother 
outputs due to the multiplier zt. In the next section, we further investi
gate the performance of these models through numerical experiments 

Fig. 7. Input control patterns and their corresponding projection on their three principal components (PC). The notations PCi denotes the ith PC. The first column 
shows the total mass rate for all production wells. The projections onto the first three PCs are derived from the input controls of all ten instances for six produc
tion wells. 
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and a field example. 

3. Experiments 

3.1. Test cases 

We first investigate the ability of the models in capturing long-term 
trends using a toy example. A difficulty faced in data-driven modeling is 
extrapolation, especially for non-stationary data. An example is the 
production temperature decline under continuous injection of cold 
water, even when the input controls (injection and production rates) 

remain fixed. In this case, long-term prediction of temperature is bound 
to fall out of the range spanned by historical data. To investigate the 
performance of the proposed models in this extrapolation task, we 
generate synthetic datasets with different types of intrinsic trends in the 
output data (Fig. 4). The trends in the output sequence are independent 
of the input control variable. As shown in the first row of Fig. 4, the input 
control variables X = {x1, ⋯, xNT} are stationary and periodic, with 
their values remaining in the same range over 4000 time steps. The 
output data Y = {y1, ⋯, yNT

} are generated by adding periodic (sine) 
functions sin(2πx) to different types of trends, named as “Stationary”, 
“Linear trend”, “Convergent trend”, and “Divergent trend”, shown in the 

Fig. 8. Distribution of production temperature variation over 20 years of simulation under different control scenarios. The black bar represents the range between 25 
and 75 percentiles of the distributions. The white point represents the mean of the distribution. 

Fig. 9. Prediction results of production temperature for Control Pattern A using four different predictive models. Each model is trained with a varying number of 
time steps (samples), as follows: (a) Trained using 200 time steps; (b) Trained using 400 time steps; and (c) Trained using 600 time steps of samples. The ranges of 
output (production temperature) and input control (indicated by the gray line) are from 0 to 1. The data points after the vertical dashed lines represent the test sets. 
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second to the last row of Fig. 4. In this example, Nx = 1 and Ny = 1. 
Therefore, the input X and output Y are 1-by-4000 vectors. The pre
diction is an interpolation task for the “Stationary” case, but an 
extrapolation task for the cases of “Linear”, “Convergent”, and “Diver
gent” trends. 

We assume that only the first 2000 steps of input and output se
quences are available at the beginning. Therefore, the min-max 
normalization is performed only based on the first 2000 steps. The last 
2000 steps of data points are treated as future data that are unseen by the 
predictive models. The proposed model is first developed using the first 
1500 data points and generates short-term predictions for the next 500 
steps. To investigate the extrapolation property of the models, we make 
long-term predictions over the last 2000 steps using the trained model 
and compare the predictions with future data. The predictive model 
used here is a stacked RNN with two layers, consisting of the regular 
GRU layer and the physics-guided RNNs (phy-RNN or phy-GRU) (See 
Appendix A). The first GRU layer is designed to handle the nonlinear 
mapping introduced by the sine function, while the second physics- 
guided RNN layer is designed to handle the intrinsic trend. For each 
forward run on one training sample, the GRU layer is fed with the input 
sequence xt and initial hidden state zt ∈ RNz× 1, where the initial hidden 
state is a zero vector by default. The output from the GRU layer is the 
matrix of latent variables Zt ∈ RNz×Nt , where Nt = 102 and Nz = 3. The 
phy-RNNs take Zt as input sequence and yt ∈ RNy× 1 as its initial hidden 
state and predict Ŷt ∈ RNy×Nt over Nt steps. The loss function of the 
predictive model for a batch of Ns samples is defined as 

L (θ) =
∑Ns

t
‖ Ŷ t − Yt ‖

2
2, (15)  

where Yt ∈ RNy×NT is the ground truth and θ contains the trainable pa
rameters of the predictive model. The loss function is optimized by using 
the Adam optimizer (Kingma and Ba, 2014). Further information about 
the model complexity and hyperparameters is provided in Appendix A. 

Fig. 4 shows the results generated by the proposed phy-GRU on four 
different cases. The proposed predictive model accurately predicts local 
nonlinear variants caused by the changes in the input control. More 
importantly, phy-GRU can capture different trends over the next 2500 
steps by only learning from the first 1500 steps. This example suggests 
that the proposed approach can better handle extrapolation tasks by 
providing long-term predictions of non-stationarity trends. We further 
compare the performance of phy-RNN and phy-GRU with purely data- 
driven model. Specifically, a stacked RNN model with two GRU layers 
is applied to the toy example. The only difference between the three 
different models is the second layer. Fig. 5 compares the root-mean- 
square errors (RMSE) of three different models over four cases. Both 
phy-RNN and phy-GRU can predict the long-term trends for different 
cases and capture the nonlinear local perturbations. On the other hand, 
the GRU model works well in the stationary case but fails in all the other 
three non-stationary cases, especially for the “Linear” and “Divergent” 
cases. 

Overall, the experiment suggests that the proposed phy-RNNs are 
capable of handling time-series data with different trends and making 
long-term predictions in the presence of intrinsic non-stationarity. The 

Fig. 10. The RMSE distributions of the test dataset of production temperature across ten instances in all four models. Five columns represent the distribution for the 
models trained using different number of time steps, ranging from 200 to 600 as indicated in the subtitles. In each subfigure, the box plot corresponds to the first 
quartile (25th) and third quartile (75th) of the RMSE distribution over ten instances. 
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phy-RNNs are better able to handle non-stationarity that can result in the 
outputs falling outside the training data distribution. 

3.2. Simulated field cases 

We apply the proposed physics-guided RNNs to a simulated dataset 
obtained from a simulation model of a field-scale geothermal reservoir. 
A simulation model of a low-enthalpy single-phase geothermal reservoir 
is applied to generate the simulated dataset (Fig. 6). The geothermal 
reservoir features high-permeability zones, named “Fault Zones”, of 
which the temperature distribution is shown in Fig. 6. There are six 
production wells shown as red columns, which are named 21-19, 77-19, 
77A-19, 88-19, 78-20, and 21-28 from West to East. Eight injection wells 
named 23-17, 36-17, 37-17, 85-19, 24-29, 38-21, 44-21, and 36A-15 
exist and are shown in the blue column. Well 24-29 is converted from 
an observation well to an injection well. The simulation model spans 
over around twenty years with a fixed time interval of seven days, 
amounting to 1055 time steps in total, i.e., NT = 1055. The input 
control variables to the simulation model are the mass flow rate of both 
production and injection wells. The output observations collected from 
the simulation model are the brine temperature of six production wells 
and the BHP of both production and injection wells. 

We investigate the second type of extrapolation, where the input 
variables in the training dataset Xtrain = {x1, ⋯, xM} and testing dataset 
Xtest = {xM+1, ⋯, xN} are sampled from two distributions with different 
ranges. The investigation of the second extrapolation problem is 
necessary since the control optimization implementation with data- 
driven models typically leads to an extrapolation situation where the 
control vectors are high-dimensional and typically fall beyond the range 
of training samples (Yu and Jafarpour, 2022). We define the difference 
between the sampling distribution in the training and testing datasets as 

the “inconsistency”. As shown in Fig. 7, we generate three simulated 
datasets with different levels of inconsistency for the input control, 
named Control Patterns A, B, and C. The total production rates of the 
first two patterns have ramp-up and ramp-down trends, respectively. In 
contrast, the third control pattern has a consistent range. The sampling 
of the controls must meet the following constraints: 1) the total pro
duction mass rate equals the total injection mass rate, 2) the mass rate 
control of each well is bounded by upper and lower limits, and 3) the 
total production/injection rate follows the control pattern shown in 
Fig. 7. For each control pattern, we generate ten instances by randomly 
allocating the total rate to each well while honoring the above 
constraints. 

Next, we investigate the performance of the proposed phy-RNN and 
phy-GRU models for long-term prediction by applying them to simulated 
datasets with different control patterns. Specifically, we apply the pro
posed models to predict production temperature and BHP. These two 
types of outputs have distinct features in terms of extrapolation. Under 
continuous injection, the production temperature exhibits an intrinsic 
trend, i.e., temperature decline, which is the first type of extrapolation 
studied in this work. The second type of extrapolation, caused by the 
inconsistency in the control range, exists in both temperature and BHP 
data. On the other hand, the BHP can be maintained within a consistent 
range when the injected cold water provides sufficient pressure support. 
Therefore, BHP prediction typically involves only the second type of 
extrapolation, while temperature prediction includes both types. In this 
experiment, the proposed predictive models are single-layer RNNs uti
lizing either phy-RNN or phy-GRU as the recurrent unit (See 
Appendix A). The decision to employ single-layer RNNs, as opposed to 
two-layer RNNs in the previous example is based on the following rea
sons. Compared to the test case in Section 3.1, the simulated dataset in 
this experiment exhibits less nonlinearity, thereby facilitating more 

Fig. 11. BHP prediction results for Control Pattern A using four different predictive models that are trained using 500 and 600 time steps of data. The range of input 
control (indicated by the gray line) is shown on the right y-axis and spans from 0 to 1. 
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accurate predictions by single-layer phy-RNNs. Moreover, the single- 
layer architecture has fewer trainable weights and more modest 
training data requirements. 

3.2.1. Production temperature prediction 
Fig. 8 shows the temperature variation for 1053 time steps over three 

different control patterns and ten instances. The variation for each time 
step is defined as the difference between the temperature and the mean 
value of temperature over different patterns and instances. It is shown 
that, under different control patterns, the temperature profiles of Wells 
21-28, 88-19, 77A-19, and 77-19 show clear variation due to their 
proximity to injection wells. The brine temperatures of Wells 78-20 and 

21-19 are stable over the whole simulation time (around 20 years). We 
exclude Wells 78-20 and 21-19 in our temperature prediction task. The 
output Y ∈ R4 × 1053 is the production temperature of Wells 21-28, 88- 
19, 77A-19, and 77-19 over 1053 time steps. The input X ∈ R11 × 1053 is 
the mass flow rate of four production wells and seven injection wells 
located in Fault Zones 2 and 3. In addition, we set different values for the 
length of the training set NT0 to investigate its effect on the prediction 
performance. That is, we use the first NT0 (= 200, 300, 400, 500, and 
600) time steps of the simulated dataset {X, Y} to generate the training 
set. Other than the two physics-guided deep learning models, we include 
the regular GRU model as well as the physics-based proxy model 
(denoted as Proxy in this paper) proposed by Qin et al. (2022) for 

Fig. 12. RMSE distributions for the BHP test dataset corresponding to three models and across ten instances. Four columns represent the number of time steps used 
for training the models (300, 400, 500, and 600, respectively). 

Fig. 13. Normalized temperature of the produced brine in the field. The zeros in the data indicate missing values.  
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comparison. 
Fig. 9 shows the prediction results for the case with “Control Pattern 

A” using four different predictive models that are trained on training 
samples with different sizes. The results for the cases with Control Pat
terns B and C are shown in Appendix B. For NT0 = 200 (Fig. 9(a)), the 
predictions from the four models do not consistently follow the correct 
trends over all the production wells. Specifically, the predictions from 
phy-RNN and Proxy models appear as straight lines for Well 21-28 
(Proxy) as well as for Wells 77-19 and 77A-19 (phy-RNNs). Instead, 
the ground truth of temperature shows a “Divergent” curve due to the 
increasing injection rate in this case. This indicates that the models need 
additional training samples to learn the input-output relationship 
properly, rather than being overfitted to the historical trend with a 
simple linear trend. In contrast, the predictions from the regular GRU 
consistently reach a plateau over the future steps and exhibit significant 

discrepancies. The average RMSE over ten different instances of models 
for the four wells is around 0.33 (as shown in Fig. 10(a)), significantly 
higher than that of the phy-RNNs and Proxy models (i.e., 0.1). However, 
it is worth noting that the RMSE of the Proxy and NT0 = 200 in Fig. 10(a) 
has a significant variance and ranges from 0.07 to 0.38. This is partly 
attributed to the fact that temperature prediction by the Proxy relies on 
the BHP predictions from a different deep learning model (the phy-RNN 
model). This design results in more trainable parameters for the Proxy, 
which is easily overfitted. Furthermore, any errors arising from the BHP 
prediction will propagate to the temperature prediction and potentially 
accumulate. However, the design of this joint prediction is necessary for 
the Proxy model since it is rule-based and requires the pressure as an 
input for temperature prediction. 

When NT0 is increased to 400 (Fig. 9(b)), the long-term predictions 
from phy-RNNs and Proxy can capture the temperature trend over more 

Fig. 14. Normalized (a) production and (b) injection volumetric flow rate in the geothermal field. The zeros in the data indicate shut-in periods or missing values.  

Fig. 15. Prediction results for brine temperature in six production wells using three different models: the proxy model (Proxy), phy-GRU, and phy-RNN. All three 
models are trained using the first 1100 time steps, with testing performed after the 1100th time step. 
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than 600 time steps, amounting to around 12 years. In contrast, the 
predictions from the GRU model continue to deviate from the ground 
truth as the prediction horizon extends. As shown in Fig. 10, the average 
RMSE values for phy-RNNs converge to around 0.06 when NT0 = 400 for 
three control patterns. The Proxy model provides comparable results 
only when NT0 is increased to 400 or above and provides unstable pre
dictions with fewer training samples, as reflected by the high RMSE 
variance. 

Additionally, as shown in Fig. 10(b), the regular GRU model achieves 
lower prediction errors compared to the other two control patterns. This 
finding highlights the behavior of the regular GRU model that performs 
better in capturing the "Convergent" trend compared to the "Divergent" 
and "Linear" trends, as reflected by the results in Section 3.1. In the 
simulated example, the temperature decline in Control Pattern B ex
hibits a “Convergent” trend as the injection rate of cold water progres
sively decreases over time. Therefore, the prediction from the regular 
GRU for Control Pattern B exhibits lower RMSE than that for the other 
two control patterns. 

In summary, the proposed phy-RNNs outperform the other two 
models over all the cases with different patterns and sizes of training set 
NT0 . The GRU model typically fails to extrapolate the temperature 
decline and works slightly better with Control Pattern B, where the 
temperature data shows a convergent trend. The Proxy model shows 
comparable performance only when there are sufficient training samples 
(i.e., NT0=400 or 500). 

3.2.2. BHP prediction 
In this example, we apply the two phy-RNNs to predict the BHP data 

from the same dataset. In the case of temperature prediction, we only 
focused on the temperature of four production wells. In the case of BHP 
prediction, however, both injection and production wells are of interest. 
To reduce the model complexity and the size of training samples, we 
only focus on the wells from Fault Zone 2, which has the most complex 
well connectivity. The input X ∈ R7 × 1053 contains the controls of three 
production wells (i.e., 88-19, 77A-19, and 77-19) and four injection 
wells (36-17, 37-17, 85-19, and 24-29). The output Y ∈ R7 × 1053 is the 
BHP from the same wells. In addition to the two phy-RNNs, we apply the 
regular GRU model to this example for comparison. In this example, we 
start with a larger training window for training (NT0 = 300, 400, 500, 
and 600) since the complexities of the three models are larger due to the 
higher dimension in the output feature. Fig. 11 shows the prediction 
results from the case “Control Pattern A” for the three different models. 

The normalized control for each well increases from zero to one over 
time. For the cases with NT0=500 and 600, phy-RNN provides accurate 
predictions even though the control range of the testing set becomes 
inconsistent. The predictions from phy-GRU are accurate for most wells 
but lose fidelity for Well 37-17. Fig. 12 presents a summary of the RMSE 
losses for three predictive models across three different control patterns. 
Among the three models, the phy-RNN model exhibits lower RMSE mean 
and variance, outperforming the other two models across most cases. In 
contrast, phy-GRU and regular GRU provide comparable results only 
when NT0 is increased to 500 or 600 for three control patterns. The 
phy-GRU shares similar architecture with phy-RNN but contains more 
components (e.g., zt and rt) which might involve more samples to train. 
Additionally, the phy-GRU tends to generate smoother predictions due to 
these additional components. This default behavior of the phy-GRU 
model may conflict with the non-smooth nature of BHP. On the other 
hand, the phy-RNN model is designed based on the water level calcu
lation from the lumped parameter model. This design choice enables the 
phy-RNN model to benefit from a concise input-output relationship, 
allowing it to capture the essential dynamics with fewer training 
samples. 

Among the cases with NT0 = 200 over different control patterns, it is 
observed in Fig. 12 that the three predictive models demonstrate 
significantly lower variances in RMSE for Control Pattern C compared to 
Control Patterns A and B. In Control Pattern C, the BHP displays a sta
tionarity behavior over time, as depicted in Fig. B-4, mainly because the 
control ranges used for both the training and testing sets remain 
consistent with each other. As a result, the predictive models can capture 
the underlying patterns effectively, leading to lower RMSE variances 
(Fig. 12(c)). Conversely, Control Patterns A and B exhibit non-stationary 
BHP behavior. This non-stationarity is attributed to the out-of- 
distribution controls in the testing set, relative to the control range 
during training. Consequently, the predictive models trained using 300 
time steps of samples struggle to accurately capture the trends caused by 
control patterns. 

3.3. Field case 

We apply the phy-RNNs to real field data from a single-phase 
geothermal reservoir to predict the brine temperature at the produc
tion wells. The studied reservoir field is the same reservoir simulated in 
Section 3.2. The raw data are sampled hourly and contain a significant 
amount of redundant information, for example, noises and missing 
steps. The raw data is first downsampled to a lower frequency of daily 

Fig. 16. The distribution of prediction errors (y − ŷ) for three predictive models in the field example. The legend displays the RMSEs and R2 scores between y 
(measured) and ŷ (predicted) for the three models. The y-axis represents the frequency of occurrences of error value, with a total of 6000 instances across 1000 time 
steps and 6 wells. 
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sampling, which helps the predictive model learn long-term trends. We 
also smooth both the input and output sequences to remove the noises 
and redundant fluctuations caused by missing data or short shut-in pe
riods. Other than the missing data and noises, there are occasional gaps 
within the data caused by longer shut-in periods. We use the labeling 
scheme proposed by (Jiang et al., 2022) to avoid the prediction of those 
gaps. The input sequence X ∈ R13 × 2100 is the volumetric flow rate of 
seven injection wells and six production wells (Fig. 13). The output 
sequence Y ∈ R6 × 2100 is the brine temperature of six production wells 
(Fig. 14). The first 1100 time steps are used to generate training samples, 
and the next 1000 time steps are for testing. Other than two 
physics-guided RNNs, we still apply the proxy model in this example for 
comparison. 

Fig. 15 shows the prediction results of the field brine temperature 
using the three different models. One major difficulty in predicting the 
field data is caused by measurement noises and irregular shut-ins. The 
predictions from the two phy-RNN models accurately capture the long- 
term trends and disregard the noise in the controls. This highlights the 
robustness of phy-RNNs to poor data quality. In contrast, the proxy 
model is more disturbed by noises and fails to predict the trends. 
Furthermore, in Fig. 16, the prediction error of phy-GRU is lower than 
that of the phy-RNN model, despite both models achieving R2 scores 
close to 1. This observation suggests that the phy-GRU model is more 
suitable for temperature prediction than the phy-RNN model. The 
smoother predictions generated by the phy-GRU’s default behavior may 
contribute to its lower prediction error compared to the phy-RNN model. 

4. Discussion 

4.1. Two types of extrapolations 

We work on an extrapolation task and divide it into two types to 
better define the problem. The first type happens when the time-series 
output exhibits non-stationarity, such as the temperature decline. The 
challenge in this case is how to learn the intrinsic dynamics from 
training samples and make reliable long-term predictions. The second 
type of extrapolation happens when the input vector is out of the range 
spanned by the input in the training set, a situation that can occur when 
the input variable is high-dimensional (Balestriero et al., 2021). The 
mapping from a high-dimensional input space to the output space re
quires an extremely large dataset to cover the input space, which is 
impractical for engineering problems. However, a high-dimensional 
input space commonly exists in practical problems, such as field opti
mization and inverse modeling. In the field optimization problem, the 
input control might contain more than one hundred elements for mul
tiple wells and multiple time steps. Furthermore, the control optimiza
tion using data-driven models typically leads to control solutions that 
fall beyond the training samples. Therefore, the control optimization 
needs a reliable predictive model that can address this type of extrap
olation. In inverse modeling, the dimension of the geological variable (e. 
g., permeability) could be more than hundreds of thousands due to the 
high-dimensional grid system of a simulation model. The purely 
data-driven model typically fails to extrapolate beyond the training set, 
despite its powerful learning capability and efficiency. On the other 
hand, a reliable physics-based simulation model entails computationally 
expensive run time, which makes it prohibitive for complex iterative 
workflow (e.g., control optimization, inverse modeling, and uncertainty 
quantification). 

We propose fit-for-purpose predictive models that integrate prior 
knowledge of physics into the architecture of deep learning models, 
which are named physics-guided RNNs (phy-RNNs). We investigate their 
prediction performance on test cases, field-scale simulated datasets, and 
field data. The results on the toy example show that the proposed deep 
learning models work well with the first type of extrapolation and learn 
the long-term trend from training samples, whereas the regular GRU can 

only handle the stationary case. In the simulated examples, we investi
gate the prediction performance of phy-RNNs on the production tem
perature and BHP, which are two distinct time-series data. Similar to the 
time series in test cases, production temperatures are non-stationary and 
refer to the first type of extrapolation. In contrast, the BHP data typically 
remains stationary when there is mass balance between production and 
injection. In addition, we set the control range of testing set to be out of 
the control range in the training set and therefore introduce the second 
type of extrapolation to both temperature and BHP predictions. Under 
different control patterns, the phy-RNNs provide reliable long-term 
predictions with sufficient training samples (NT0 = 300 for tempera
ture and NT0 = 500 for BHP). We also applied two different models to 
the second experiment for comparison: the purely data-driven model 
(GRU) and the physics-based proxy model. The results show that the 
GRU model fares poorly for the extrapolation task, whereas the physics- 
based proxy model shows comparable performance only with enough 
training samples. Compared with phy-RNNs, the proxy model also re
quires the prediction of BHP data, which introduces more complexity to 
the model and therefore requires more samples for training. 

4.2. Design of the architecture 

In this work, we introduce a purely data-driven model (regular GRU) 
and the physics-based proxy model for comparison. The proxy model 
works as a rule-based method because the physics is embedded in the 
architecture. Furthermore, the physical relationships need to be 
simplified such that they can be represented as neural networks. 
Compared with the proxy model, the proposed phy-RNNs only keep the 
discretization scheme of the simplified governing equations and 
approximate the physical mapping f(⋅) by the neural networks F θ(⋅). 
This powerful learning capability allows the neural networks to 
approximate the nonlinear physical mapping given sufficient training 
samples. As shown in the field example, the rule-based proxy model fails 
to provide reliable predictions when the input-output relationship is 
affected by poor data quality. 

On the other hand, the number of trainable parameters in the regular 
GRU is comparable to that in the phy-GRU, whereas the GRU fails in 
extrapolations. The proposed phy-GRU takes the regular GRU as the 
prototype and makes minimum modifications to it. The only difference 
between these two models is the last step, which is converted from a 
weighted average in GRU to a skip connection in phy-GRU. The issue 
with the regular GRU lies in its last step, where the relationship between 
each two successive hidden states is equivalent to a backward Euler 
scheme of an exponential function (Appendix C). This equivalence with 
an exponential function limits the performance of the regular GRU 
model. On the contrary, the use of the skip connection allows the model 
to efficiently learn the trends in the time-series data. 

Compared to phy-GRU, phy-RNN has a simpler architecture and 
generates output y that has a more direct relationship with the input x. 
Furthermore, the phy-RNN can be viewed as a constrained phy-GRU, 
with the constraints of rt = 1 and zt = 1 enforced by the architecture of 
phy-RNN. Despite phy-GRU being a more general form than phy-RNN, 
the results for the simulated BHP data show that phy-RNN outperforms 
phy-GRU under different sizes of training samples. It suggests that the 
constraints on rt and zt introduced by the architecture of phy-RNN are 
more effective than those imposed by the training samples. Further
more, the phy-RNN is designed based on the mass balance equation in 
the lumped parameter model that predicts the water level of wells in a 
low-temperature geothermal reservoir. This fit-for-purpose architecture 
allows phy-RNN to efficiently learn the input-output relationship from a 
relatively small training dataset. 

5. Conclusion 

This work proposes physics-guided RNN models (phy-RNN and 
phy-GRU) to handle long-term predictions and extrapolation tasks in 
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energy production from geothermal reservoirs. For comparison, we also 
apply two different models to the second experiment: a purely data- 
driven model (GRU) and a physics-based proxy model. The GRU 
model fares poorly in the extrapolation task and only works well in the 
Stationary case, as reflected in Fig. 5. As discussed in Section 3.2, the 
predictions of temperature and BHP time-series in geothermal reservoirs 
involve two types of extrapolations, which can create difficulty for the 
regular GRU model in capturing the long-term trends. This is because 
data-driven models, such as GRU, only rely on statistical input-output 
relationship and lack causality. The integration of physics or domain 
knowledge into the architecture can solve the limitations encountered 
by data-driven models and significantly improves the prediction per
formance of deep learning models. The physics-based proxy model in
corporates the underlying governing equations with certain 
simplifications to provide better extrapolation capability. However, the 
strict design of the architecture reduces the learning capacity of the 
proxy model and limits its generalizability (e.g., to problems where the 
underlying physics my be uncertain). 

Compared with the regular GRU and physics-based proxy, the pro
posed phy-RNNs exhibit extrapolation capability and generalizability as 
shown in our results. Through the integration of physics, phy-RNNs 
improves the extrapolation power of RNN and cangenerate more reliable 
long-term predictions for both temperature and BHP. The phy-RNNs can 
be applied to different types of trends with non-stationarity and under 
different ranges of input controls. Compared with the proxy model that 
is only limited to temperature and the GRU model that is only applicable 
to stationary cases, phy-RNNs can be applied to predict both temperature 
and BHP with various types of trends. 

Although the physics-guided RNN retains most of the architecture of 
RNN and GRU models, more complex neural network architecture can 
be designed to approximate the underlying nonlinear mapping. Recent 
research has combined the skip connection with convolutional kernels 
to approximate the discretization of PDEs. This application might help 
the design of physics-guided deep learning models for predicting the 

entire geothermal reservoirs and facilitate more complex problems such 
as inverse modeling and uncertainty quantification. 
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Appendix A. Details of predictive models and hyperparameters 

A.1. Regular GRU and RNN model  

A.2. Implementation details of deep learning models 

All three deep learning models used in the test cases consist of two layers, with the first layer being GRU. The second layer of these three models are 
GRU, phy-RNN and phy-GRU, respectively. The illustration of the two-layer phy-RNNs is shown in Fig. A-3. The single-layer phy-RNNs (Fig. A-4) are 
applied to the simulated and field examples. The physics-based Proxy model always consists of two layers, which are the phy-RNN for BHP prediction 
and Proxy for temperature prediction. 

The following tables (Tables A-1 to A-4) provide additional information of predictive models used in different experiments, including test cases, 
simulated cases, and field case. The dash symbol “ − ” in the column “Component” means that the RNN-type models are single-layer. The learning rate 
is selected based on the training and validation losses. The deep learning models, including Proxy, RNNs and phy-RNNs, are trained on an Intel Core i7- 
9700K CPU @ 3.60 GHz with eight cores, with an installed memory (RAM) of 64.0 GB. The training speeds of each model for different experimental 

Fig. A-1. An illustration of GRU.  
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cases are presented in the following tables. The training speed is measured in milliseconds (ms) per sample (step), with a batch size of 1. The 
computational cost of training in this work are trivial for all different models due to the simplicity of their architectures and the small number of 
parameters involved. Additionally, the memory usage of CPU is negligible for all the deep learning models in this work due to their lightweight 
architectures. 

Fig. A-2. An illustration of RNN.  

Fig. A-3. Illustration of the two-layer RNN model applied to the test cases. The “phy-RNN” denotes the proposed physics-guided RNN or physics-guided GRU. The 
input 0 to the GRU is the initial hidden state, which is a vector of zeros by default. 

Fig. A-4. Illustration of the single-layer phy-RNNs applied to simulated and field case. The “phy-RNN” denotes the proposed physics-guided RNN or physics- 
guided GRU. 
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A.3. Equations of regular RNNs and physics-guided RNNs  

Appendix B. Results of production temperatures  

Table A-1 
Detailed description of GRU model in different experiments.   

Component Number of Parameters Learning Rate Training Speed (ms/step) 

Test Cases GRU (First Layer) 54 0.0035 9 
GRU (Second Layer) 18 

Simulated Temperature - 204 0.005 7 
Simulated BHP - 336 0.005 9  

Table A-2 
Detailed description of phy-RNN model in different experiments.   

Component Number of Parameters Learning Rate Training Speed (ms/step) 

Test Cases GRU (First Layer) 54 0.0035 5 
phy-RNN (Second Layer) 7 

Simulated Temperature - 69 0.005 3 
Simulated BHP - 113 0.005 5 
Field Case - 127 0.0005 6  

Table A-3 
Detailed description of phy-GRU model in different experiments.   

Component Number of Parameters Learning Rate Training Speed (ms/step) 

Test Cases GRU (First Layer) 54 0.0035 9 
phy-GRU (Second Layer) 19 

Simulated Temperature - 205 0.005 7 
Simulated BHP - 337 0.005 9 
Field Case - 379 0.0005 11  

Table A-4 
Detailed description of proxy model in different experiments.   

Component Number of Parameters Learning Rate Training Speed (ms/step) 

Simulated Temperature phy-RNN (First Layer) 265 0.0035 15 
Proxy Unit (Second Layer) 78 

Field Case phy-RNN (First Layer) 365 0.0005 18 
Proxy Unit (Second Layer) 140  

Table A-5 
Detailed description of equations in regular RNNs and phy-RNNs.   

GRU phy-GRU 

Equations 

rt = σ(Wrxt + Urht− 1 + br) rt = σ(Wrxt + Urht− 1 + br)

zt = σ(Wzxt + Uzht− 1 + bz) zt = σ(Wzxt + Uzht− 1 + bz)

h̃t = tanh(Wxt + U(rt∘ht− 1) + b) h̃t = tanh(Wxt + U(rt∘ht− 1) + b)
ht = zt∘ht− 1 + (1 − zt)∘h̃t ht = ht− 1 + δt⋅zt∘h̃t  

RNN phy-RNN 

Equations ht = tanh(Whht− 1 + Wxxt + b) ht = ht− 1 + δt⋅tanh(Whht− 1 + Wxxt + b)
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Fig. B-1. Prediction results of production temperature for the control pattern B.  

Fig. B-2. Prediction results of production temperature for the control pattern C.  
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Fig. B-3. Prediction results of BHP for the control pattern B.  

Fig. B-4. Prediction results of BHP for the control pattern C.  
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Appendix C. Default behavior of GRU 

In this section, we explore the GRU model for its exponential-like decaying behavior. Given a simple exponential function y = exp( − a⋅t), we can 
concert it to an ODE as follow: 

dy
dt

= − a⋅y, (C-1) 

Then, we solve it numerically by using backward Euler method for time t ∈ [0,+∞) and constant coefficient a ∈ (0, + ∞). The resulting numerical 
solution for the exponential function is shown as follow: 

yn =
yn− 1

(1 + a⋅Δtn)
, (C-2)  

where n denotes the n-th time step. The Equation (C-2) can also be rewritten as follow: 

yn = zn⋅yn− 1, (C-3)  

where 

zn =
1

1 + a⋅Δtn
, zn ∈ [0, 1). (C-4) 

As shown in Equation (C-3), there is a linear relationship between the current state yn and previous state yn− 1, with a multiplier of zn. It is noted that 
the last step of GRU, shown in Equation (4), has the same relationship between the previous state and current state. The only difference between 
Equation (4) and Equation (C-3) is the second term (1 − zt)∘h̃t in the Equation (4). However, this term only affects the convergence value of the GRU, 
not its decaying behavior. The multiplier zn in the Equation (C-3) and the variable zt in the GRU are not identical in the sense that zt is a function of xt 

and ht− 1, despite the same range for both two coefficients. However, the variable zt of the GRU amounts to a time-variant coefficient a or a changing 
time step for the exponential function exp( − a⋅t). 

A simple example is shown below that connects the predictions from regular GRU to an exponential function (Fig. C-1). The GRU model is trained 
on a straight line with a certain slope over four thousand time steps. The output from the GRU plateaus after around 1500 time steps. We then remove 
the second term (1 − zt)∘h̃t in Equation (4) and only keep the first term zt∘ht− 1, which is shown as red curve in Fig. C-1. By converting the multiplier zt 
to a⋅Δtn using Equation (C-4), we can represent the first term ht = zt∘ht− 1 by using the exponential function yn = exp( − a⋅Δtn), which is shown as green 
dash curve in Fig. C-1. It can be observed that the curve ht = zt∘ht− 1 is equivalent to yn = exp(− a⋅Δtn) once we find the corresponding values for Δtn. 

Fig. C-1. Illustration of default behavior of the regular GRU model. The first composition zt∘ht− 1 of the last step within the GRU model is compared with an 
exponential function, of which the parameter is a function of first composition zt . 
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