
1. Introduction
Sustainable development of geothermal resources can play an important role as a clean and renewable source in 
meeting the future energy demand (Olasolo et al., 2016). The past decade has seen a rapid increase in recovering 
geothermal energy for both direct-use and electrical power generation (Bertani, 2016; Lund & Toth, 2021). The 
development of geothermal fields includes extracting heat (hot water or steam) from the subsurface reservoir 
(resource) and transporting it to the surface facilities, for example, geothermal power plants, where the heat 
energy is transformed into electricity that is added to the power grid. The efficiency of energy production is highly 
dependent on the brine enthalpy and temperature (Zarrouk & Moon,  2014). Energy production performance 
from geothermal reservoirs can be improved through effective field development plans and reservoir manage-
ment strategies. Specifically, in an optimization problem, well control variables, for example, well flow rates or 
bottomhole pressure (BHP), can be adjusted to maximize a user-specified objective function over the reservoir life 
cycle, for example, net power generation or net present value (NPV). This task typically requires a  reliable predic-
tive model to make long-term predictions over the life cycle of the project. The predictive model is combined with 
an optimization algorithm to develop a model-based optimization framework, also known as model predictive 
control. Model-based optimization can be performed using detailed full-physics numerical simulation models, 
which we refer to as “simulation-based optimization.” The simulation model generates long-term predictions 
of the optimization objective function, as well as its gradients, which are used by the optimization algorithm 
to search for a solution. However, detailed simulation models are not trivial to construct and entail significant 

Abstract Improving the long-term energy production performance of geothermal reservoirs can be 
accomplished by optimizing field development and management plans. Reliable prediction models, however, 
are needed to evaluate and optimize the performance of the underlying reservoirs under various operation and 
development strategies. In traditional frameworks, physics-based simulation models are used to predict the 
energy production performance of geothermal reservoirs. However, detailed simulation models are not trivial to 
construct, require a reliable description of the reservoir conditions and properties, and entail high computational 
complexity. Data-driven predictive models can offer an efficient alternative for use in optimization workflows. 
This paper presents an optimization framework for net power generation in geothermal reservoirs using a 
variant of the recurrent neural network (RNN) as a data-driven predictive model. The RNN architecture is 
developed and trained to replace the simulation model for computationally efficient prediction of the objective 
function and its gradients with respect to the well control variables. The net power generation performance 
of the field is optimized by automatically adjusting the mass flow rate of production and injection wells over 
12 years, using a gradient-based local search algorithm. Two field-scale examples are presented to investigate 
the performance of the developed data-driven prediction and optimization framework. The prediction and 
optimization results from the RNN model are evaluated through comparison with the results obtained by using 
a numerical simulation model of a real geothermal reservoir.

Plain Language Summary The paper proposes the use of recurrent neural network (RNN) 
architectures for capturing the dynamics of historical well response data as a function of input control variables. 
A trained RNN is then used as an efficient input-output dynamical model for optimization of energy recovery 
from geothermal reservoirs. Results from time-consuming simulation-based and fast RNN prediction models 
are presented and evaluated to compare the optimization strategies of the two approaches, indicating their 
consistency. The results suggest that RNN can be used as an efficient dynamic prediction tool for decision 
support and management of geothermal reservoir operations and development.
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computational runtime (Franco & Vaccaro, 2014). They also require an accurate description of highly uncertain 
reservoir properties and involve a challenging model calibration process (Jafarpour & McLaughlin, 2008, 2009). 
These issues can present a hurdle for field deployment of these techniques. Therefore, efficient fit-for-purpose 
proxy (or surrogate) models have been proposed to replace the simulation model during optimization to alleviate 
its computational burden. The resulting framework is referred to as the proxy-based optimization. Examples of 
proxy models include data-driven statistical models, simplified physcis-based models, analytical approximations, 
or simulation models with coarser grid systems, see (Asher et al., 2015; Razavi et al., 2012) for a review.

Optimization with simulation models is commonly used in determining the design parameters of EGS (Chen 
et al., 2015; Pollack & Mukerji, 2019; Samina et al., 2019), and has been widely applied to oil and gas reservoir 
operation (Chen et al., 2009; Jahandideh & Jafarpour, 2018, 2019; Jansen et al., 2008; Kim & Durlofsky, 2021; 
Kim et al., 2022; van Essen et al., 2009). For well control optimization, gradient-based algorithms have shown 
promise in reservoir engineering applications. A major difficulty in using these techniques, however, is the need 
for efficient computation of the required gradients. To reduce the computational cost, ensemble-based tech-
niques have been proposed to approximate the gradient with fewer simulation runs than are needed by stand-
ard finite-difference approximation methods. Examples of such techniques are Ensemble Optimization (EnOpt) 
(Chen et al., 2009; Do & Reynolds, 2013; Fonseca et al., 2015) and Stochastic Simplex Approximate Gradient 
(Stowage) (Fonseca et al., 2017). However, the quality of the approximated gradients in these methods depends 
on the ensemble size, which determines the number of simulation runs.

The application of optimization to geothermal reservoir operations using physics-based proxy models has been 
investigated by several authors. Juliusson and Horne (2013) fit an empirical model to a simulation model and 
use it to control the production flow rate by fixing the BHP as an empirical function of the injection rate. The 
proxy model is then applied to maximize the NPV of the asset by optimizing the injection rate allocations. 
Hecht-Méndez et al. (2013) use the line source solution as a proxy model for a borehole heat-exchanger (BHE) 
system. They integrate the resulting model into an optimization problem to mitigate the anomaly in the temper-
ature field. The optimization problem is defined as minimizing the maximum temperature decline by adjusting 
the brine extraction rate. Sigurdardottir et al. (2015) apply a lumped parameter model to maximize the project 
NPV by adjusting the pump use through a mixed-integer programming algorithm (continuous production rate 
and discrete pump options as decision variables). Patterson et al. (2020) use analytical solutions to represent the 
production response of an enhanced geothermal system (EGS) to optimize the economics of production opera-
tion. While the physics-based proxy models mentioned above can provide physically consistent predictions, their 
underlying assumptions limits the application to specific and simple problems.

Data-driven proxy models provide fast prediction and gradient computation that can significantly improve the 
computational efficiency of optimization workflows. To do so, they are trained to learn the statistical input-output 
relationship from available data. A common type of data-driven proxy model is linear regression and its exten-
sions that have been applied to maximize energy production from geothermal reservoirs (Chen et  al.,  2015; 
Schulte et al., 2020; Song et al., 2021). Chen et al. (2015) use multivariate adaptive regression spline (MARS) 
and response surface methodology (RSM) to optimize well locations in geothermal reservoirs under uncertainty. 
Recently, multi-objective optimization has been introduced to consider the trade-off between pressure support 
and thermal breakthrough (Schulte et al., 2020; Song et al., 2021). Schulte et al. (2020) apply the multi-objective 
particle swarm algorithm to a well placement optimization problem for a doublet geothermal system using linear 
regression as a proxy model (with a Gaussian process regression as the response surface model). Their work 
develops one proxy model for each geological realization using more than one hundred simulated input-output 
samples. However, the prediction from the linear regression-based proxy model shows a significant discrepancy 
in temperature. Song et  al.  (2021) integrate the genetic algorithm into multi-objective optimization to deter-
mine the operational parameters of an enhanced geothermal system (EGS). In their work, multiple linear regres-
sion (MLR) is used with simulated data to generate a proxy model to represent the objective functions. RSM 
has also been widely used in subsurface flow systems for optimization or model calibration purposes (Babaei 
et al., 2022; Chen et al., 2015, 2021; Schulte et al., 2020). RSM directly relates independent variables to the 
objective function and provides fast evaluation during optimization. However, RSM is typically designed as 
a second-order polynomial equation, which limits its application to complex large-scale problems (Baş & 
Boyacı, 2007). While artificial neural networks (ANN) have also been applied to response surface methodology 
or to replace linear regression-based proxy models, it has shown limitation in handing long-term dependencies 
and dynamics that are prevalent in subsurface flow system.
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Different types of proxy models have also been used in the water resources literature (Razavi et al., 2012). With 
recent advances in machine learning, especially neural network-based deep learning models, a new class of 
proxy models is introduced for characterization of subsurface flow systems (Jiang & Jafarpour, 2021a, 2021b; 
Laloy et al., 2017; Razak & Jafarpour, 2020), and for prediction of their dynamic responses, such as time-series 
well response data (Gudmundsdottir & Horne, 2020; Jiang et al., 2021; Shi et al., 2021; Tian & Horne, 2017). 
More recently, the long-short term memory (LSTM) (Hochreiter & Schmidhuber, 1997) has been used as the 
proxy model with particle swarm optimization (PSO) in two-phase flow systems (Kim & Durlofsky, 2021; Kim 
et al., 2022). Kim and Durlofsky (2021) apply the LSTM to waterflooding optimization problems for a short- 
term (less  than  three years) operation optimization. Kim et al.  (2022) also apply the LSTM to waterflooding 
problems under geological uncertainty. They reduce the number of independent variables by parameterizing the 
BHP control trajectory as cosine function. In general, deep learning models use hundreds of simulation runs to 
generate training samples. For example, Kim et al. (2022) run 5,000 reservoir simulations for ten geological real-
izations to train and test their deep learning-based proxy model. However, it is desirable to minimize the number 
of simulations that are needed for training a proxy model.

Two general  limitations of the existing deep learning models that can potentially hinder their wide-spread 
adoption for application to subsurface flow systems are extensive training data need and weak extrapolation 
(long-term prediction). Typically, data-driven proxy models require extensive amount of data, especially for 
long-term prediction. In many scientific applications, such as geothermal systems, real data is limited and must 
be augmented with either simulated data or physics-based constraints to improve the reliability of predictions. 
However, generating extensive amounts of simulated data is computationally expensive and effective strategies 
must be adopted to reduce the computational demand of these methods. Another important limitation of machine 
learning models is their weak extrapolation power, which is particularly important in optimization problems, 
where exploring the solution space to find extreme values is bound to go beyond the training data range. In light 
of these issues, one important aspect that can aid with efficient design and implementation of data-driven proxy 
models is adapting them to their intended purpose/use. Given the sensitivity of machine learning models to train-
ing data, it is important to use effective sampling strategies to adapt the simulated data to the expected patterns 
and data ranges in the field.

Considering these important properties and  the limitations of deep learning models, we propose an approach 
for efficient long-term prediction and optimization of geothermal energy production using RNN-type data-driven 
input-output proxy models. The paper demonstrates, using sensitivity analysis and comparison with simula-
tion results, that for input-output models of sequential data, only a few simulated training samples may provide 
adequate data for long-term predictions. The study shows that, for long-term predictions, where the proxy model 
is likely to perform extrapolation over unseen control ranges, historical field data may not be sufficient. However, 
the addition of a few simulated data for the prediction range can significantly improve the performance of the 
RNN-type proxy models. Another key aspect that is the need for proper design and implementation, including 
effective sampling strategies, monitoring of the proxy model during optimization, and convenient retraining to 
integrate new data.

Two numerical experiments are performed to investigate the performance of the proxy-based optimization frame-
work. In the first experiment, the  well mass flow rates are used as control variables that are fixed over the 
12-year life cycle of a geothermal project. Three sets of proxy models are trained, each using a different number 
of simulated data realizations (60, 100, 140). The number of realizations refers to the number of simulation 
runs to generate labeled data for different control inputs. In the second experiment, the well mass flow rates 
are allowed to change annually over the 12 years of production. Therefore, the dimension of the control varia-
bles is 12-times larger than it is in the first experiment. We investigate the computational cost of developing the 
proxy model in this work and perform a sensitivity analysis to assess the effect of the number of training data 
realizations on the prediction performance of the proxy model. The results indicate that, for training RNN models 
with simulated data, a modest number of simulations (e.g., 10) with different control inputs could provide the 
necessary training data to learn the main input-output relations of the geothermal reservoir. The trained model 
can then be integrated into the optimization framework to speed up the computation. The optimization results and 
the predictive accuracy of the proxy model are evaluated using full-physics-based simulation and optimization 
approach.
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2. Methodology
In this section, the optimization workflow (Figure 1) using both proxy-based and simulation-based predictions 
is presented. The main components of the workflow include the optimization implementation and the deep 
learning-based prediction model. Since simulated data is used for training the model and for validating the results, 
prediction with physics-based simulation models is also briefly described. We first describe the workflow that 
connects these components and then present a more detailed description of the three components in this section.

2.1. Overview of Workflow

The optimization goal is to maximize energy production by adjusting control variables, which are the mass 
flow rates of production and injection wells. The objective function is the net power generation over 
12  years,  which  is  maximized  using a gradient-based optimization algorithm. The objective function and 
the  required gradients are computed efficiently using the trained proxy model. The optimization results from 

Figure 1. Proposed workflow for (a) development of the proxy model and (b) development of proxy-based and simulation-based optimization framework. In the 
optimization framework (b), depending on whether a simulation model or a proxy model is used for prediction  the workflow is referred to as simulation-based or 
proxy-based optimization, respectively.
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the deep learning-based proxy model are compared with those obtained using a physics-based simulation model 
of the geothermal reservoir. The simulation model is developed in TETRAD simulation software (Vinsome & 
Shook, 1993). As shown in Figure 1, the simulation model is used to (a) perform sensitivity analysis, (b) generate 
simulated datasets, and (c) validate the data-driven model and perform simulation-based optimization. Of these 
functionalities, the first two contribute to the development of the deep learning proxy model, which are denoted 
as “Process 1” and “Process 2” in Figure 1a, respectively. “Process 3” is called upon once the proxy model is built 
and used for prediction and optimization as shown Figure 1b.

The deep learning model used in this work is named CNN-RNN and was introduced in previous research (Jiang 
et al., 2022). The architecture of the proposed deep learning model consists of a convolutional neural network 
(CNN) and a recurrent neural network (RNN). The CNN-RNN model is designed to take the well mass flow rates 
as time-series input and predict the production enthalpy over the field life cycle (12 years). We also perform a 
sensitivity analysis using the simulation model to confirm the segmentation of the field into four independent 
divisions (fault zones). Field evidence and collected data, including tracer test results, have shown that the fault 
zones do not communicate with each other. The sensitivity analysis is used to investigate how strongly the inputs 
and outputs of all wells are correlated in the simulation model. The inputs and outputs are the production and 
injection mass flow rate and production enthalpy, respectively. Based on the sensitivity analysis, instead of using 
one proxy model to represent the whole field, we use four different models to learn the input-output relationship 
for each fault zone. This process serves as feature selection and reduces the complexity of the deep learning 
model and the amount of data required for training. Once the CNN-RNN models are trained and validated based 
on simulated data, they are used as proxy models to predict the energy production response of different fault 
zones in the reservoir. The predicted enthalpies and mass flow rates by the proxy model are then used to calculate 
the optimization objective function. In this paper, we refer to the individual models for each fault zone as the 
CNN-RNN model and denote the aggregate model for all zones as the proxy model for the field.

The simulation model is used to generate the simulated data sets for training and validation of the deep learning 
models for each fault zone. The control vectors are sampled using the Latin Hypercubic Sampling (LHS) tech-
nique. In the second experiment of this work, we progressively increase the control samples to find the mini-
mum sample size that provides the desired accuracy. The training is supervised and requires labels (simulated 
production enthalpy) for each input feature (the normalized mass flow rate). The trained models are validated 
by comparing their predictions against the validation data sets using the root-mean-square-error (RMSE) and 
R-squared 𝐴𝐴

(

𝑅𝑅
2
)

 score metrics. Once the proxy model is validated, it is integrated into the proxy-based optimiza-
tion framework for fast computation of the objective function and its gradient. The required gradients are auto-
matically calculated and stored during forward prediction with the deep learning-based proxy model. To evaluate 
the performance of the proxy-based optimization, the physics-based simulation model is used in two different 
ways. The simulation model is first used to monitor the prediction accuracy of the proxy model. At each iteration 
of the proxy-based optimization, the simulation model takes the input control variables and returns the simulated 
value of the objective function (as the reference case). This monitoring process is not needed in real application of 
the method and is only used to illustrate the prediction fidelity of the proxy model. Second, for validating the opti-
mization results from the proxy model, the simulation model is used to perform simulation-based optimization. 
The results from the simulation-based optimization are used as the reference case in evaluating the optimization 
performance of the proxy-based optimization.

2.2. Optimization Implementation

The proxy-based and simulation-based optimization frameworks are both implemented using a gradient-based 
local search algorithm. When the physics-based simulation is used to provide the predictions during optimiza-
tion iterations, the computational cost can be high. The computational burden can increase significantly when 
the required gradient information must be computed numerically. One approach to speed up the computation 
is to adopt gradient approximation techniques such as the ensemble-based optimization (EnOpt). The EnOpt 
algorithm finds a least squares solution to the linear relationship between perturbed control vectors and corre-
sponding objective values (Fonseca et al., 2015). It typically requires far fewer simulations than the standard 
finite difference approach to approximate the gradients. However, the quality of the approximated gradient in 
the EnOpt approach depends on the number of simulations used. Errors in approximating the gradients typically 
lead to additional optimization iterations to converge to a solution. In extreme cases, the approximation error may 
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become too large and the computed search direction may not be a descent direction, thus stalling the optimization 
algorithm. In this work, the simulation-based optimization is only used to validate the results of the proxy-based 
optimization. In the examples presented, since the number of decision variables is modest, finite-difference gradi-
ent approximation is used to compute the gradients. The implementation of the proxy-based and simulation-based 
optimization frameworks is based on the submodule “optimize” from the open-source SciPy software. For opti-
mization, the built-in trust-region constrained optimization algorithm, with the implementation proposed in Lalee 
et al. (1998) for equality-constraint problems, is used.

2.2.1. Optimization Formulation

The well control variables of the optimization problem are time-varying mass/volumetric flow rate, or 
BHP. Denoting the control variables as 𝐴𝐴 𝐴𝐴 and the objective function as 𝐴𝐴 𝐴𝐴 (⋅) , a simple form of the optimization 
problem can be formulated as:

𝑢𝑢
∗
= 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎

𝑢𝑢∈𝑈𝑈

𝑓𝑓 (𝑢𝑢)

𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎(𝑢𝑢𝑢 𝑎𝑎) = 0

 (1)

where 𝐴𝐴 𝐴𝐴(𝑢𝑢𝑢 𝑢𝑢) are the nonlinear equality constraints that represent the governing equations of the subsurface 
flow system (e.g., balance equations of mass, momentum, and energy). The notation 𝐴𝐴 𝐴𝐴 is used to represent the 
reservoir input parameters (e.g., reservoir and fluid properties). Since the governing equations constraints are 
automatically satisfied by running the fluid flow simulation, hereafter, this constraint is dropped for brevity.

In optimization of geothermal reservoirs, different objective functions may be used. Examples include maximi-
zation of net power generation, minimization of maximum temperature decline, and minimization of average 
temperature decline over the life cycle of the project. In this work, maximization of the net power generation is 
adopted to improve energy production sustainability by mitigating the long-term temperature decline. To convert 
the problem to minimization, the objective function is set to be the negative value of the net power generation 
from the reservoir, that is:

𝑓𝑓 (𝑢𝑢) = −Net Power Generation

= −

𝑁𝑁𝑇𝑇
∑

𝑘𝑘=1

[(

𝑁𝑁𝑃𝑃
∑

𝑗𝑗=1

𝑢𝑢
𝑘𝑘

𝑗𝑗
ℎ
𝑘𝑘

𝑗𝑗
−

𝑁𝑁𝐼𝐼
∑

𝑖𝑖=1

𝑢𝑢
𝑘𝑘

𝑖𝑖
ℎ
𝑘𝑘

𝑖𝑖

)

⋅ 𝜂𝜂 −

𝑁𝑁𝑃𝑃 +𝑁𝑁𝐼𝐼
∑

𝑖𝑖=1

𝑢𝑢
𝑘𝑘

𝑖𝑖
𝑟𝑟
𝑘𝑘

𝑖𝑖

]

⋅ Δ𝑡𝑡𝑘𝑘
 (2)

where 𝐴𝐴 𝐴𝐴 is the vector of input variable that consists of the mass flow rate of production and injection wells at each 
time step; 𝐴𝐴 𝐴𝐴

𝑘𝑘

𝑖𝑖
 and 𝐴𝐴 𝐴

𝑘𝑘

𝑖𝑖
 are the mass flow rate and specific flowing enthalpy of well 𝐴𝐴 𝐴𝐴  at time step 𝐴𝐴 𝐴𝐴 , respectively; 

𝐴𝐴 𝐴𝐴 denotes the power plant efficiency; 𝐴𝐴 𝐴𝐴
𝑘𝑘

𝑖𝑖
 represents the ratio of the pump load of well 𝐴𝐴 𝐴𝐴  to its mass flow rate at 

time step 𝐴𝐴 𝐴𝐴 ; 𝐴𝐴 Δ𝑡𝑡𝑘𝑘 is the 𝐴𝐴 𝐴𝐴
𝑡𝑡𝑡 time step size; 𝐴𝐴 𝐴𝐴𝑇𝑇  , 𝐴𝐴 𝐴𝐴𝑃𝑃 and 𝐴𝐴 𝐴𝐴𝐼𝐼 denote the number of time steps, production wells, and 

injection wells, respectively. The objective function consists of three components for each time step 𝐴𝐴 𝐴𝐴 , which 
are the produced enthalpy 𝐴𝐴

∑𝑁𝑁𝑃𝑃

𝑗𝑗=1
𝑢𝑢
𝑘𝑘

𝑗𝑗
ℎ
𝑘𝑘

𝑗𝑗
 , the injected enthalpy 𝐴𝐴

∑𝑁𝑁𝐼𝐼

𝑖𝑖=1
𝑢𝑢
𝑘𝑘

𝑖𝑖
ℎ
𝑘𝑘

𝑖𝑖
 , and the cost of running the pumps for the 

production and injection wells 𝐴𝐴
∑𝑁𝑁𝑃𝑃 +𝑁𝑁𝐼𝐼

𝑖𝑖=1
𝑢𝑢
𝑘𝑘

𝑖𝑖
𝑟𝑟
𝑘𝑘

𝑖𝑖
 . To simplify the optimization problem, the pump load ratio 𝐴𝐴 𝐴𝐴  is set to 

be constant. The mass flow rate 𝐴𝐴 𝐴𝐴 , as control vector, is set to honor three practical constraints: (a) mass balance 
equality constraint (equating the total rate of production and injection for each time step), (b) demand equality 
constraint, by setting the total production rate to be a fixed value, and (c) bound constraints for each control vari-
able. The mathematical representation of the resulting constrained optimization problem is given as:

min
𝑢𝑢

𝑓𝑓 (𝑢𝑢) = −Net Power Generation

𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁𝑃𝑃
∑

𝑖𝑖

𝑢𝑢
𝑘𝑘

𝑖𝑖
=

𝑁𝑁𝐼𝐼
∑

𝑗𝑗

𝑢𝑢
𝑘𝑘

𝑗𝑗
, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1, 2, . . . , 𝑁𝑁𝑇𝑇

𝑁𝑁𝑃𝑃
∑

𝑖𝑖

𝑢𝑢
𝑘𝑘

𝑖𝑖
= 𝑄𝑄

𝑘𝑘

prod
, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1, 2, . . . , 𝑁𝑁𝑇𝑇

𝑢𝑢
lower ≤ 𝑢𝑢 ≤ 𝑢𝑢

upper

 (3)

where 𝐴𝐴 𝐴𝐴
𝑘𝑘

prod
 is the total production rate at time step 𝐴𝐴 𝐴𝐴 ; 𝐴𝐴 𝐴𝐴

lower and 𝐴𝐴 𝐴𝐴
upper are the lower and upper bounds of the control 

variable 𝐴𝐴 𝐴𝐴 , respectively.
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2.3. Physics-Based Simulation Model

For numerical simulation of the geothermal reservoir, in this paper we use TETRAD (Vinsome & Shook, 1993). 
The simulation model is a three-dimensional single-phase dual-porosity numerical reservoir model consisting 
of roughly 35,000 grid blocks. The numerical model has dimensions of 16 km in the X-direction by 18 km in 
the Y-direction and extends from +1,500 to −3,000 mRSL. The geothermal reservoir has several distinct fault 
zones that are characterized by elevated permeability, high-productivity wells, and convective thermal gradients 
(Murphy et al., 2017). The subsurface system contains six production wells and eight injection wells, for which 
the connectivity is dominated by the existing fault zones (Cladouhos et al., 2017). A screenshot of the initial 
temperature of the main fault zones, as well as the well locations, in the numerical simulation model is shown 
in Figure 2. The six production wells are marked in red, while the eight injection wells are shown in blue. Well 
24–29 was originally an observation well and changed to an active injection well in the simulation. The main fault 
zones are named Fault Zone 1, Fault Zone 2, Middle Zone, and Fault Zone 3, from West to East, respectively. 
Table 1 summarizes the wells included in each of the fault zones. Fault Zone 1 and Middle Zone have only one 
production well each, that is, Well 21-19 and Well 78-20, respectively. Well 58-29 is not active in this work, 
despite being marked as an injection well. Fault Zone 2 has Production Wells 88-19, 77-19 and 77A-19, and 
Injection Wells 85-19, 36-17, 37-17, 23-17, and 24-29. Well 88-19 has the strongest connection to the production 
wells in this compartment due to its proximity. Fault Zone 3 has Production Well 21-28 and Injection Wells 44-21 
and 38-21. The differences in the connectivity and the complex geological setting result in distinct production 
behavior for each well.

2.3.1. Simulated Data Set

Weekly outputs from the simulation model are used as data set to train 
the deep learning model for long-term prediction. The weekly data set is 
generated over around 12 years (from 2021/05/21 to 2032/12/31). The well 
controls (features) are the mass flow rates of production and injection wells. 
The model output (label) is the specific enthalpy of produced brine. To 
generate the training data set, the mass flow rates are generated stochasti-
cally, while honoring the three linear constraints in Equation 3. The input 
variables are then randomly perturbed by adding Gaussian noise with a 2% 
standard deviation. Injection temperature is not controlled but is a required 
input into the simulation and is specified based on realistic data that follows 
seasonal variations.

Figure 2. The main fault zones and well locations in the physics-based simulation model of the field example. The color 
of the grid block represents the initial temperature of the rock matrix. The scale of temperature is not shown due to data 
confidentiality.

Table 1 
Separation of Wells for Each Fault Zone

Fault zone Production wells Injection wells

Fault Zone 1 21-19 –

Fault Zone 2 88-19, 77-19, 77A-19 85-19, 36-17, 37-17, 23-17, 24,29I

Middle Zone 78-20 –

Fault Zone 3 21-28 44-21, 38-21

Others – 36A-15
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2.3.2. Simulation Model With Annual Control Changes

The original simulation model that is used to generate weekly training data is adjusted and used with less frequent 
outputs for faster implementation of the long-term optimization. As stated earlier, the optimization problem with 
simulated prediction generated by the simulation model is used to evaluate the optimization performance of the 
data-driven model.

The simulation model is also applied to monitor the prediction accuracy of the proxy model during the optimzi-
tion iterations. To this end, the control variables over all iterations within the proxy-based optimization are sent to 
the simulation model to compute the corresponding simulated values of the objective function as a reference. The 
comparison between the values predicted by the proxy and simulated models is used to monitor the quality of the 
proxy model. This monitoring step is not needed in actural implementation of the method and is only used in this 
paper to demonstrate the prediction performance of the proxy model throughout the iterations.

2.3.3. Sensitivity Analysis and Feature Selection

A sensitivity analysis is performed with the simulation model to assess the relationship between the inputs and 
outputs of the geothermal reservoir model. The analysis leads to a better understanding of the subsurface struc-
ture and informs the feature selection step of the data-driven model. The sensitivity analysis quantifies the partial 
derivative 𝐴𝐴 𝐴𝐴𝐴𝐴∕𝐴𝐴𝜕𝜕 , which measures the changes in the output variable 𝐴𝐴 𝐴𝐴 due to changes in the input variable 𝐴𝐴 𝐴𝐴 
(Lenhart et al., 2002). The central difference approximation of the partial derivative can be expressed as:

𝐼𝐼
′
=

𝑦𝑦2 − 𝑦𝑦1

2Δ𝑥𝑥
 (4)

where 𝐴𝐴 𝐴𝐴
′ represents the sensitivity index, 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 refer to the output values corresponding to the two perturbed 

input variables 𝐴𝐴 𝐴𝐴0 − Δ𝐴𝐴 and 𝐴𝐴 𝐴𝐴0 + Δ𝐴𝐴 , respectively, with 𝐴𝐴 𝐴𝐴0 denoting a reference value for the input with a corre-
sponding output value 𝐴𝐴 𝐴𝐴0 , and 𝐴𝐴 Δ𝑥𝑥 denoting the perturbation. To get a dimensionless sensitivity index, 𝐴𝐴 𝐴𝐴

′ is 
normalized as follows

𝐼𝐼
′
=

(𝑦𝑦2 − 𝑦𝑦1)∕𝑦𝑦0

2Δ𝑥𝑥∕𝑥𝑥0

 (5)

In our examples, the output variables 𝐴𝐴 𝐴𝐴 are the specific enthalpy of six production wells collected after 10 years 
of operation. The input variables 𝐴𝐴 𝐴𝐴 are the mass flow rate of six production wells and eight injection wells, 
which are fixed during the simulation. For each input 𝐴𝐴 𝐴𝐴0 , two simulation runs are needed for the correspond-
ing two perturbed controls 𝐴𝐴 𝐴𝐴0 − Δ𝐴𝐴 and 𝐴𝐴 𝐴𝐴0 + Δ𝐴𝐴 , respectively. Therefore, the sensitivity analysis for the 14 vari-
ables involves 28 simulation runs. The perturbation size 𝐴𝐴 Δ𝑥𝑥 is set to be 25% of the feasible ranges of 𝐴𝐴 𝐴𝐴 . Based on 
the results from sensitivity analysis, the simulation model of the geothermal reservoir is divided into four fault 
zones. We develop and train four separate deep learning models to represent each of the four fault zones in the 
numerical simulation model (Figure 2). The feature selection for deep learning models follows the separation 
presented in Table 1. Since Injection Well 36A-15 shows no effect on any of production wells, it is not included in 
any of the proxy models. The sensitivity analysis is used to reduce the dimension of the input and output variables 
in developing deep learning models. In machine learning, this process is known as feature selection, which aims 
to reduce the model complexity (e.g., the number of trainable parameters) and data needs.

2.4. Deep Learning-Base Proxy Model

In this section, we briefly discuss the role of the deep learning model (Figure 3) and the proxy model (Figure 4) 
to give a clear problem formulation. A detailed description and development of the CNN-RNN architecture can 
be found in our previous work (Jiang et al., 2022). The use of CNN-RNN architecture in this work is primarily 
motivated by easy access to this model from our prior work. Other implementations of RNN may also be used in 
the presented workflow. The CNN-RNN model consists of one CNN encoder, one RNN encoder, and one RNN 
decoder. The CNN encoder is based on the one-dimension (1D) convolution operation for time-series data. The 
CNN encoder takes a short sequence of historical data, 𝐴𝐴 {𝐱𝐱, 𝐲𝐲} ∈ ℝ

𝐷𝐷×𝑚𝑚 , and maps it to the low-dimensional latent 
variables, 𝐴𝐴 𝐳𝐳 ∈ ℝ

𝐷𝐷𝑧𝑧×1 . For each prediction step, starting from timestep 𝐴𝐴 𝐴𝐴  , the data consists of the historical well 
control trajectories (i.e., mass flow rate), 𝐴𝐴 𝐱𝐱 ∈ ℝ

𝐷𝐷𝑥𝑥×𝑚𝑚 , and the corresponding enthalpy outputs, 𝐴𝐴 𝐲𝐲 ∈ ℝ
𝐷𝐷𝑦𝑦×𝑚𝑚 , over 

the past 𝐴𝐴 𝐴𝐴 timesteps. The superscripts 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝑥𝑥 , 𝐴𝐴 𝐴𝐴𝑦𝑦 , and 𝐴𝐴 𝐴𝐴𝑧𝑧 refer to the dimensions of historical data 𝐴𝐴 {𝐱𝐱, 𝐲𝐲} , control 
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variables 𝐴𝐴 𝐱𝐱 , enthalpy outputs 𝐴𝐴 𝐲𝐲 , and the latent variables 𝐴𝐴 𝐳𝐳 , respectively. The superscript 𝐴𝐴 𝐴𝐴 represents the length 
of historical data that is used in the CNN encoder. The output from the CNN encoder, 𝐴𝐴 𝐳𝐳 , is sent to four different 
fully connected feedforward neural networks that generate the initial states for the following RNN encoder and 
decoder structures.

Figure 3. The architecture of the convolutional neural network-recurrent neural network (CNN-RNN) model.

Figure 4. A demonstration of the proxy model and its use in calculating the objective function and its gradient.
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An LSTM unit is used in both encoder and decoder. As a popular variant 
of RNN, the LSTM is developed for handling the long-term dependencies 
between the current states and previous states. For the RNN encoder, we use 
two different neural networks to generate the initial hidden state, 𝐴𝐴 𝐳𝐳1ℎ ∈ ℝ

𝐷𝐷ℎ , 
and the initial cell state, 𝐴𝐴 𝐳𝐳1𝑐𝑐 ∈ ℝ

𝐷𝐷ℎ . The subscript 1 denotes the first RNN 
encoder layer. The notations 𝐴𝐴 𝐴 and 𝐴𝐴 𝐴𝐴  represent the hidden and cell states, 
respectively. The superscript 𝐴𝐴 𝐴𝐴ℎ denotes the dimension of hidden state. For 
the RNN decoder, another set of two neural networks is used to generate the 
hidden state, 𝐴𝐴 𝐳𝐳2ℎ ∈ ℝ

𝐷𝐷𝒚𝒚 , and the cell state, 𝐴𝐴 𝐳𝐳2𝑐𝑐 ∈ ℝ
𝐷𝐷𝒚𝒚 . The RNN encoder  takes 

an arbitrary length 𝐴𝐴 𝐴𝐴 of future controls, 𝐴𝐴 𝐱𝐱 ∈ ℝ
𝐷𝐷𝑥𝑥×𝑛𝑛 , and compresses them 

into a hidden feature sequence, 𝐴𝐴 𝐡𝐡 ∈ ℝ
𝐷𝐷ℎ×𝑛𝑛 . Then, the RNN decoder takes 

the hidden state as input and generates the predicted output 𝐴𝐴 �̂�𝐲 ∈ ℝ
𝐷𝐷𝑦𝑦×𝑛𝑛 as 

time-series data.

Since the input 𝐴𝐴 𝐴𝐴 to the CNN-RNN model are the well mass flow rates and 
the outputs 𝐴𝐴 𝐴𝐴 are the specific enthalpies of the  produced brine the values 
of 𝐴𝐴 𝐴𝐴𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑦𝑦 are the total number of wells and the number of produc-
tion wells within a fault zone, respectively. The data are normalized using 

the 0-1 min-max normalization. The length of the historical data 𝐴𝐴 𝐴𝐴 and the dimension of the hidden feature 
𝐴𝐴 𝐴𝐴ℎ are the  tuning parameters that must be  specified by the user. The length of the  future controls, 𝐴𝐴 𝐴𝐴 , is 

a user-specified integer. The CNN-RNN implementation is based on the open-source machine learning package 
TensorFlow (Abadi et al., 2016). The training process is implemented by minimizing an objective function that 
represents the mismatch between predicted and observed data. The Adam optimizer is used to train the resulting 
architectures (Kingma & Ba, 2014).

The four trained CNN-RNN models for different fault zones are combined and used as a proxy model to predict 
the field energy production performance. For the trained proxy model, the input is the sequence of future controls 
(i.e., mass flow rates) of all production and injection wells 𝐴𝐴 𝐱𝐱 ∈ ℝ

𝐷𝐷𝑥𝑥×𝑛𝑛 and the outputs are the specific enthalpies 
of the production wells, 𝐴𝐴 �̂�𝐲 ∈ ℝ

𝐷𝐷𝑦𝑦×𝑛𝑛 . The predicted enthalpies, along with the mass flow rates, are used to calculate 
the net power generation. As shown in Figure 4, the proxy model is then connected to the objective-function layer 
through a computational graph in TensorFlow, which leverages the automatic differentiation (AD) technique 
for  the gradient calculation. During optimization, the gradient will be automatically calculated and stored when 
the whole computational graph (i.e., the proxy model combined with the objective function) is used to predict the 
enthalpy and calculate the objective function.

3. Field-Scale Numerical Experiments
In this section, two numerical experiments are presented to demonstrate the performance of the proposed 
proxy-based optimization framework. The deep-learning proxy models in the two experiments are trained and 
validated using the simulated data set generated by the field model. The proxy-based prediction and optimization 
results are validated by replacing the proxy model with the simulation model for the same problem setup.

3.1. Experiment 1: Fixed Rate Optimization

In the first experiment, the control vector (mass flow rate) is fixed over the life cycle of the project, which is 
around 12 years (from 2021/05/21 to 2032/12/31). There are 14 control variables corresponding to the 14 wells 
in the reservoir. To investigate the sensitivity of the prediction performance to the number of training datasets, 
three proxy models are trained using datasets with 60, 100, and 140 simulated cases, and the results are validated 
on an additional set of 100 realizations. The enthalpy responses of the four different fault zones to changes in 
the control variables are distinct. Compared with the insignificant enthalpy variations in Fault Zone 1 and the 
Middle Zone, the enthalpy outputs from Fault Zones 2 and 3 are sensitive to the injection rates, mainly due to 
the proximity of the wells. Figure 5 shows the RMSE loss of the three sets of proxy models (trained on 60, 100, 
and 140 data sets) for the validation set with the 100 unseen samples. The RMSE losses are calculated for the 
predicted normalized enthalpy of four production wells from Fault Zones 2 (88-19, 77-19, and 77A-19) and Fault 
Zone 3 (21-28). All three proxy models show small losses. A non-monotonic behavior is observed in the RMSE 

Figure 5. Sensitivity analysis showing the root-mean-square-error loss 
based on test data sets as a function of the number of training datasets.
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losses for different sizes of training data from 60 to 140. For example, the RMSE loss for Well 21-19 decreases 
(slightly) when the data size is increased from 60 to 100 and increases (slightly) when the data size increases 
from 100 to 140. This non-monotonic behavior is not significant and is mainly attributed to the randomness in 
the training of a deep learning model (e.g., initialization of weights, local minima, stochastic gradient algorithms, 
etc.). Therefore, for the sample sizes used in the first experiment (60, 100, and 140), the prediction performance 
of the proxy model is acceptable.

Figure 6 shows the Quantile-Quantile (Q-Q) plot to compare the predictions from the proxy model (y-axis) with 
the corresponding simulated values (x-axis) over the validation data set. Specifically, we investigate the normal-
ized values of the specific enthalpy of production wells and the net power generation of the project. The proxy 
model used for comparison is trained using 60 samples. As is reflected by the 𝐴𝐴 𝐴𝐴

2 scores that are close to 1, the 
predictions of enthalpy and net power generation match the simulated values.

Each of the three proxy models is used in the optimization framework, with the results denoted as Proxy 60, 
Proxy 100, and Proxy 140. As an additional demonstration step, we run the simulation model to monitor the 
prediction accuracy of the proxy model during optimization (note that the optimization algorithm is implemented 
based on the proxy model and the physics-based monitoring simulations are performed to validate the predictions 
made by the proxy model). The corresponding monitoring cases are referred to as Sim 60, Sim 100, and Sim 
140, respectively. Although this comparison is not necessary in practical application of the proposed approach, 
it is performed in this paper to examine the performance of the model. As shown in Figure 7(left), the objective 
function in all three proxy-based cases shows approximately 9% improvement. The monitoring plots, however, 

Figure 6. Scatter plots of predictions from the simulation model and the proxy model trained on 60 data sets.

Figure 7. Objective function value for proxy-based optimization: (left) evolution and monitoring values versus iterations, (right) the distribution of net power 
generation for the training data set and monitored values.
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show slightly lower improvements at the end of the iterations, indicating that the proxy-based optimizations 
overestimate the optimal net power generation. The discrepancy between the proxy and simulation models during 
the iterations suggests that the control inputs begin to fall outside the regions covered by the training datasets. 
Figure 7(right) depicts the distribution of the net power generation for the training datasets, as well as the distri-
bution of the monitored objective function values for three proxy-based optimization cases (i.e., Sim 60, Sim 100, 
and Sim 140). All three monitored values, with the prefix “Sim” in the legend, surpass the net power generation 
in the training data set. The results indicate that the proxy model can identify search directions that improve the 
value of the objective function.

To further investigate the reliability of the proxy-based optimization framework, simulation-based optimization 
is implemented for the same setup. Figure 8 shows the comparison between optimal controls of each production 
and injection well for three proxy-based optimization cases along with the simulation-based case. The results 
confirm an overall good consistency between the well control solutions that are obtained using the simulation and 
proxy models. The production wells with higher production capacity are assigned higher rates (e.g., Wells 88-19 
and 77-19), and vice versa (e.g., Wells 21-28 and 21-19). The allocation of injection rate is mainly based on the 
mass-balance constraint. The Injection Well 85-19 has an obvious negative effect on the production in Fault Zone 
2 and, therefore, its injection rates is decreased to the lower bound.

Table  2 summarizes the improvements in the net power generation as evaluated by the proxy-based optimi-
zation, the monitoring cases, and the simulation-based optimization. The absolute improvement achieved by 
simulation-based optimization is reasonably close to the monitoring values for proxy-based cases. However, 
the simulation-based optimization requires 24 iterations to reach the optimal control solution, with a total 
of 360  simulation runs to complete the optimization problem (using finite-different gradient calculation). In 
contrast, proxy-based optimization requires fewer simulations during the training phase (60, 100, and 140 simula-
tion runs). In the next experiment, we further decrease the number of simulation runs that are required for training 
a proxy model and investigate the efficiency of the proxy-based optimization.

3.2. Experiment 2: Dynamic Rate Control Optimization

In the second experiment, a more complex optimization problem is 
performed, where the control variables are  allowed  to change annually 
over the 12 years of simulation. Therefore, the length of the control vector 
is 𝐴𝐴 12 × 14 = 168 (12 control steps and 14 wells). To investigate the accu-
racy and computational efficiency of the proxy model, we progressively 
add control samples based on the Latin Hypercubic Sampling (LHS) and 
generate the corresponding simulated samples for a set of given controls. The 
sampling strategy is designed based on the approach in (Sheikholeslami & 
Razavi, 2017). Then, the procedure of developing the proxy model (Figure 9) 
starts with 𝐴𝐴 𝐴𝐴1 samples as training set and 𝐴𝐴 𝐴𝐴2 samples as validation set, where 

Figure 8. Comparison of optimal production and injection controls for proxy-based and simulation-based optimization.

Table 2 
Summary of Absolute Improvement in Net Power Generation in Percentage 
(%)

The number of data sets 𝐴𝐴 𝑵𝑵 = 𝟔𝟔𝟔𝟔 𝐴𝐴 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝐴𝐴 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏 

Proxy-based optimization 9.52 9.39 8.81

Monitoring using simulation 8.99 8.94 8.55

Simulation-based optimization 8.69 (24 iterations)
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𝐴𝐴 (𝑁𝑁1 +𝑁𝑁2) control vectors are sampled using the LHS approach. The CNN-RNN models are trained and validated 
with the validation losses  saved. Next, 𝐴𝐴 𝐴𝐴3 validation samples are generated using the new control vectors that 
are sampled progressively using LHS. The controls for the validation samples are generated to randomly fill in 
the space between previously sampled 𝐴𝐴 (𝑁𝑁1 +𝑁𝑁2) control vectors for training. The new validation loss on 𝐴𝐴 𝐴𝐴3 
samples for CNN-RNN models are saved and compared with the training loss to ensure consistency. This proce-
dure is repeated until the validation loss converges and the 𝐴𝐴 𝐴𝐴

2 score gets close to 1. The resulting deep learning 
models are used for optimization. The selection of the set of sample sizes 𝐴𝐴 {𝑁𝑁1, 𝑁𝑁2, . . . , 𝑁𝑁𝑘𝑘} in this procedure can 
be defined by the user. In this work, CNN-RNN models were built with 10 training samples and 10 validation 
samples. Also, a sensitivity analysis was performed in (Jiang et al., 2022) to assess the impact of the training data 
size on the prediction performance of the deep learning models. Figure 10 shows an example of predicting the 
specific enthalpy with the CNN-RNN models trained only on 10 samples and validated on another 10 samples. 
The enthalpy predictions from the CNN-RNN models are compared with those obtained from the simulation 
models. It is observed that the changes in the enthalpy for the six production wells are different. Optimization is 
then used to adjust the well controls to improve the energy production performance and to avoid early thermal 
breakthrough.

In this example, the proxy model is built using four CNN-RNN models that are trained on 10 simulated cases 
within the period 2021/05/21 and 2032/12/31. To ensure that the proxy model follows the historical data before 

Figure 9. A progressive sampling procedure for the development of the data-driven proxy model. The sampling strategy gradually increases the sample size by 
progressive Latin Hypercube Sampling and is terminated by a converged validation loss and acceptable 𝐴𝐴 𝐴𝐴

2 scores.

Figure 10. An example of the long-term prediction of specific enthalpy using CNN-RNN models trained on 10 samples.
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2021/05/21, each simulated sample includes the historical data ranging from 2013/10/17 to 2021/05/21. The 
optimization is initialized using three separate vectors of initial controls 𝐴𝐴 𝐮𝐮 , which include the field control vector 
(Initial Control 1) and two random control vectors, denoted as Initial Control 2 and 3. The Initial Control 1 is the 
control from historical field data at the last timestep 2021/05/21. One of the two random control vectors (Initial 
Control 2) is not seen by the proxy model, while the other (Initial Control 3) is picked from the training samples. 
For validation, simulation-based optimization with the same setup is also initialized using the field control vector 
(Initial Control 1).

Figure 11(left) plots the objective function values versus the iteration number for the proxy-based (“ProxyOpt”) 
and simulation-based (“SimOpt”) optimization. The monitoring cases (“Monitoring”) show that the three initial 
control cases tend to have a slight discrepancy during the iterations. This behavior is in part due to a larger number 
of control variables (degrees of freedom) and complexity for of the CNN-RNN model. The SimOpt result also 
outperforms the ProxyOpt model for the Initial Control 1 by showing a faster improvement within fewer itera-
tions. However, the simulation-based optimization using finite-difference gradient requires 169 simulation runs 
to calculate the gradient, making the approach computationally expensive  for large-scale models. A detailed 
discussion of the computational cost is presented in Section 4.3. In the first few iterations, an obvious discrepancy 
exists in the Initial Control 2 since the control values are not seen by the proxy model. In Figure 11(right), the net 
power generation labels in the training set are compared with those obtained after optimization. The net power 
generation outputs in the validation and testing sets are also shown in the background. The results show that the 
proxy-based optimized values exceed the range of values that are present in the training data, suggesting that the 
proxy model can extrapolate beyond the training set. The result is promising since the RNN proxy is trained using 
data from only 10 simulation cases.

Figure 12 shows that the production enthalpy of Fault Zone 2 (88-19, 77-19, and 77A-19) is increased through-
out the iterations and is higher than those in the other zones. Figure 13 shows the normalized rate controls of all 
production wells for proxy-based and simulation-based optimization, including the initial and optimal solutions 
as well as the control vectors in the training set. The enthalpy from Fault Zone 1 (21-19) is the lowest, and the 
related control reaches its lower bound over the 12 steps for all the three cases with different initial controls. 
For Fault Zone 2, however, the control rates of the three production wells with higher capacity reach their upper 
bounds. Figures  14 and  15 show the normalized rate of injection wells in Fault Zone 2 and 3, respectively. 
The Injection Well 85-19, on the other hand, is closed by the optimization, as it shows a strong connection 
to Wells 88-19, 77-19, and 77A-19 and can cause early thermal breakthrough for continuous injection. The 
shutdown of Injection Well 85-19 is also the reason for the increase in the production enthalpy from Fault 
Zone 2. For Middle Zone and Fault Zone 3, the controls for Wells 78-20 and 21-28 are decreased to their lower 
bounds. For both ProxyOpt and SimOpt, a portion of the rate allocation is switched from Well 21-28 to Well 
78-20, as the specific enthalpy from Well 78-20 surpasses that of Well 21-28 after around 6 years of operation 
(Figure 12). For the SimOpt, the timing of the switch in control solution fits the “switch” that happens in the 
production enthalpy, which is around the sixth step. However, the control solution with the ProxyOpt provides an 
earlier switch between these two wells, which is the reason for the objective function being different in SimOpt 
versus ProxyOpt (Figure 11). The reason for an early switch for ProxyOpt might be the mismatch between the 

Figure 11. Objective function value for proxy-based and simulation-based optimization: (left) evolution and monitoring values versus iteration number, (right) 
distribution of net power generation for the training data set and monitored optimal values.
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predicted enthalpy by RNN and the simulated enthalpy at the last iteration (Figure 12). For wells that show high 
sensitivity of enthalpy to control inputs (e.g., Wells 85-19, 88-19, 77-19, 77A-19), the control solutions from 
simulation-based optimization are consistent with those from the proxy-based models. However, the optimal 
injection rates show less consistency and are more affected by constraints since the specific enthalpy is relatively 
insensitive to most of them.

4. Discussion
This study presents an optimization framework for geothermal reservoir operations and management by using  
deep learning-based predicitve models. The proxy model is based on encoder-decoder CNN-RNN architectures 
that are trained using time series measurements collected at the well locations. The trained model is then used 
to predict the production enthalpy to calculate the net power generation. Sensitivity analysis is used to perform 
feature selection and to choose the major input-output variables of the deep learning model. The paper presents 
the design, construction, training, and validation of the proxy-based optimization framework to improve the 
efficiency of energy production from geothermal reservoirs. The feature selection step is used to generate four 
independent CNN-RNN models, one per each fault zone in the reservoir, to predict the specific enthalpy for the 
corresponding fault zones. The proxy-based optimization is applied to two field-scale numerical experiments to 
maximize the net power generation by adjusting the mass flow rate of production and injection wells.

4.1. Feature Learning

The results from the proxy-based optimization are validated against those obtained from a physics-based simula-
tion model. The prediction accuracy and optimization performance of the proxy model are evaluated, respectively, 
by monitoring the prediction errors and comparing the results with those from a simulation-based optimization.

As demonstrated in the two examples, throughout the iterations, Figures 7(left) and Figure 11(left), the objec-
tive function values obtained by the proxy-based optimization are close to those predicted by the physics-based 

Figure 12. Specific enthalpy from the proxy model (solid lines) and monitored values (dots) shown at the first and last iterations of the optimization case with “Initial 
Control 1”.
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Figure 13. Normalized mass flow rates of all production wells. Gray lines are the rate distribution in the training set; colored dash lines are three initial 
controls, and the red line is the optimal controls for the three optimization cases. The black dotted line shows the optimal control solution for the simulation-based 
optimization.

Figure 14. Normalized mass flow rates of the injection wells in Fault Zone 2.
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simulation model. This indicates that, once trained, the CNN-RNN model can provide accurate predictions during 
optimization. Furthermore, the CNN-RNN models in the second example are trained by only using simulated 
data from 10 simulated samples. With modest computational and data requirements for training, the proxy model 
can improve the computational efficiency of the field-scale optimization problems without a significant loss in 
accuracy. The simulation-based optimization approach is implemented to provide a reference case to compare the 
final values of the objective functions and the optimization solutions. As shown in Table 2 and Figure 11(left), 
the improvements in net power generation that are achieved by the proxy-based optimization are as high as those 
obtained by the simulation-based approach. Another important observation is the extrapolation power of  the 
proxy model. As shown in Figures 7(right) and Figure 11(right), the proxy models in the two examples can 
successfully extrapolate the net power generation for control strategies that fall beyond those used for training. 
This suggests that the CNN-RNN model can learn the input-output relationship after being trained on a small 
number of simulated datasets. However, this extrapolation property depends on the distance from the training 
data set and may not generalize in other examples.

4.2. Retraining Process

An important observation from this study is that the optimization process is likely to expose the proxy model to 
extrapolation. That is, after a few optimization iterations, the control variables are likely to stray outside the range 
of input-output values in the training data set. Extrapolation is generally viewed as a major difficulty in appli-
cation of machine learning algorithms. One approach to deal with extrapolation is retraining, where the model 
is retained after including additional simulated realizations (labels) that correspond to control variables in the 
proximity of the current iterate. The retraining process is expected to improve the accuracy of the proxy model. 
Retraining involves several hyperparameters, including the number of additional samples, the sampling range 
(radius), and the initialization of the retraining process, among others. In this section, a simple retraining strategy 
is performed and discussed without highlighting the effects of hyperparameters. The goal is to show the potential 
improvement that can be achieved through the retraining process.

Figure 16 visualizes the distribution of the simulated data by projecting the high-dimensional input arrays onto 
only three leading Principal Components (PCs). The training samples and background (mostly validation data 
and unused data) are distributed evenly in the reduced dimensions. The optimization iteration and control solu-
tions are derived from the optimization case “Initial Control 1.” The sampling range and the new sample size 
are set to be 0.08 and 10, respectively. That is, 10 new samples are generated by randomly adding a perturbation 
component of no more than 0.08 to the control solutions in the last iteration. The additional samples are added to 
the 10 initial samples and used to train the RNN models for Fault Zones 2 and 3. After training, the models are 
used to continue the optimization from the last iteration.

Figure  17 shows the values of the objective function before and after the retraining process, along with the 
predicted and simulated specific enthalpy after retraining and at the last iteration. The results show that after 
retraining the proxy model, the predicted values provide closer matches to the simulated values. The retraining 
process also results in a slight improvement in the net power generation. However, the changes in the control vari-
ables after retraining are not significant as the control variables are already close to the minimum values obtained 

Figure 15. Normalized mass flow rates of the injection wells in Fault Zone 3.
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from the simulation-based optimization. It is important to note that these observations are limited to the exam-
ples performed in this work and do not necessarily generalize. In general, the need for retraining and its impact 
on the prediction performance are problem-specific. In this work, the data for retraining are generated after exam-
ining different ratios of new to initial sample sizes. In general, when the number of new samples is not sufficient, 
the retraining process may not be effective. On the other hand, an insufficient number of initial samples might 
lead to overfitting and poor prediction performance. A more detailed investigation of the retraining process and 
effective implementation strategies is needed to provide additional insight about the necessity and importance of 
this step.

Figure 17. Objective function values during optimization iterations with retraining process using the CNN-RNN proxy model. The vertical dashed line (shown in red) 
indicates the retraining step, which is introduced at the 60th iteration after the first round of optimization. Two subplots show the comparisons between predicted 
enthalpy from proxy model and simulated enthalpy from simulation model. Two comparisons (red diamonds) are made at the 61st iteration (right after retraining) and at 
100th iteration (last iteration of second-round optimization), respectively.

Figure 16. Visualization of the input control samples by projecting on the first three principal components using PCA. The sampling range and size for the additional 
samples are 0.08 and 10, respectively.
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4.3. Computational Cost

The main computational cost of the proposed workflow is related to the 
generation of the simulated data set and the calculation of the required gradi-
ents. The cost of training the CNN-RNN models compared to the cost of 
a forward simulation run is typically negligible. Table  3 lists the average 
computational costs of running simulation models and generating the gradi-
ent information for the examples used in this paper. Once the proxy model 
is built, the computational costs associated with the prediction and gradi-
ent calculation are insignificant, which is one of the main motivations for 
developing the proposed proxy models. Each iteration of the proxy-based 
optimization typically takes less than one second. The simulation-based opti-
mization, on the other hand, uses several simulation runs withing the finite- 
difference approximation  framework  to estimate the required gradients. In 
our examples, the computational cost of finite-difference gradient calcula-

tion is 12.72 CPU hr. For comparison, each simulation run to generate the simulated data set for training the proxy 
model takes approximately 45 min.

The simulation software in this work is TETRAD, which was  run on a PC with 8 CPU cores as it does not support 
parallelization on HPC. Therefore, gradient calculation for simulation-based optimization is processed in parallel 
and using only 8 CPUs. The simulation-based optimizations for Experiment 2 are completed using 8 CPU cores 
in 60 hr (6,084 simulation runs), or 457.99 CPU hr equivalently. Table 4 summarizes the computational cost 
of the simulation-based and proxy-based optimization approaches for the second experiment. The training of the 
proposed proxy model only requires a small number of training samples. Even though we generated 61 simulated 
samples for the second experiment, only 21 samples are used for training (10 random samples and 1 historical 
sample) and validating (10 random samples). The remaining 40 simulated samples are not used but are shown 
as the background in Figure 16. In general, the proxy-based optimization can be used to significantly  reduce the 
computational cost of the optimization workflows.

5. Conclusion
In summary, computationally expensive simulation models pose a barrier for implementing field-scale optimi-
zation, especially when the input control variables are high-dimensional. In this paper, a workflow is proposed 
to develop deep learning proxy models to enable efficient field-scale optimization implementation to maximize 
energy production from geothermal fields. The workflow is presented and evaluated using field-scale exam-
ples. The results suggest that the proposed model can learn input-output patterns and relations from training 
datasets to provide reliable and efficient model predictions for performance optimization. In some optimiza-
tion cases, the proxy model may need to extrapolate beyond the training data set, an issue that may prompt 
the use of retraining before completing the optimization process. Another important extension of the current 
workflow is related to the treatment of geologic uncertainty in the prediction by the deep learning proxy models, 
which can have important implications for optimization. One straightforward way to address the geologic uncer-
tainty is to train multiple CNN-RNN proxy models using simulated data from different simulation models with 

different geologic  realizations. This can be followed by a robust optimiza-
tion problem formulation using an ensemble of proxy models for prediction. 
The approaches described here resemble the works of Kim et  al.  (2022) 
and Schulte et  al.  (2020),  which  involve many simulation runs to gener-
ate training data. An alternative approach is to  treat  the geologic uncer-
tainty as part of the inputs into a proxy model (Kim & Durlofsky, 2022), 
which will require the proxy model to have a more complex architecture 
with geologic maps as additional inputs. In this approach, one can train a 
single,  and  more  complex, proxy model to represent different realizations 
instead of introducing multiple proxy models to capture the behavior of 
different realizations. However, additional complexity can lead to learning in 
high-dimensional spaces, which can expose the deep learning proxy model 
to challenging extrapolation tasks (Balestriero et al., 2021). These potential 

Table 3 
Summary of the Average Computational Cost of Gradient Calculation and 
Forward Simulation Run

Model

Simulation 
model 

(weekly 
time size)

Simulation 
model 

(larger time 
size)

RNN 
proxy

Forward run (CPU time, secs) 2,143 271 0.411

Gradient Calculation (Simulation runs) – 169 0

Gradient Calculation (CPU time, secs) – 45,799 0.865

Note. The simulation model with weekly time size is not used in the gradient 
calculation. Therefore, the corresponding data is blank.

Table 4 
Summary of the Computational Cost of the Simulation-Based and Proxy-
Based Optimization in the Second Experiment

Model
Simulation run 

per gradient

Total 
simulation 

run

CPU 
time 

(hours)

Proxy-based Optimization – 21 12.50

Simulation-based Optimization 169 6,084 457.99

Note. The simulation model used for simulation-based optimization is the 
model with larger time size of 180 days. The simulation run for proxy-based 
optimization is used to generate simulated samples for training and validating.
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complications pose important questions that warrant further investigation of deep learning-based models for more 
advanced workflows that are needed in practical settings.

Data Availability Statement
Upon publication of this study, a link to the data, codes, and examples used in this study will be posted to 
the FAIR-compliant Zenodo online repository as well as our research website at http://sees.usc.edu. During 
the review process, the current versions of the files are posted to GitHub on https://github.com/ZhenQin-USC/
ProxyBasedOptimization.
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