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Abstract Prediction of the spatial‐temporal dynamics of the fluid flow in complex subsurface systems, such
as geologic CO2 storage, is typically performed using advanced numerical simulation methods that solve the
underlying governing physical equations. However, numerical simulation is computationally demanding and
can limit the implementation of standard field management workflows, such as model calibration and
optimization. Standard deep learning models, such as RUNET, have recently been proposed to alleviate the
computational burden of physics‐based simulation models. Despite their powerful learning capabilities and
computational appeal, deep learning models have important limitations, including lack of interpretability,
extensive data needs, weak extrapolation capacity, and physical inconsistency that can affect their adoption in
practical applications. We develop a Fluid Flow‐based Deep Learning (FFDL) architecture for spatial‐temporal
prediction of important state variables in subsurface flow systems. The new architecture consists of a physics‐
based encoder to construct physically meaningful latent variables, and a residual‐based processor to predict the
evolution of the state variables. It uses physical operators that serve as nonlinear activation functions and
imposes the general structure of the fluid flow equations to facilitate its training with data pertaining to the
specific subsurface flow application of interest. A comprehensive investigation of FFDL, based on a field‐scale
geologic CO2 storage model, is used to demonstrate the superior performance of FFDL compared to RUNET as
a standard deep learning model. The results show that FFDL outperforms RUNET in terms of prediction
accuracy, extrapolation power, and training data needs.

Plain Language Summary This paper introduces a Fluid Flow‐based Deep Learning (FFDL) model
for application to subsurface flow prediction. The model offers a computationally efficient prediction tool that
combines the flexibility, learning capacity, and efficiency of deep learningmodels with the structure of fluid flow
equations to achieve better training, prediction, and extrapolation performances compared to standard deep
learning models. The model provides a computationally efficient surrogate for time‐consuming physics‐based
numerical simulation models that can be used in complex decision‐making workflows that require an extensive
number of simulation runs. The model improves upon standard deep learning models by reducing training data
needs/computation and increasingmodel fidelity and reliability. Examples from field‐scale geologicCO2 storage
problems are used to demonstrate the performance of FFDL relative to a well‐established deep learning model
(RUNET). The results suggest that, by combining the strengths of deep learning and physics‐basedmodels, FFDL
can provide an efficient proxy model to facilitate the implementation of complex workflows in subsurface flow
systems, including model calibration, uncertainty quantification, and optimization.

1. Introduction
Carbon capture and storage is an important component in reducing the CO2 emissions by capturing from point
sources and injecting it into deep geologic formations. Although geologic CO2 storage has significant potential, it
is still in the early stages. Concerns about CO2 migration or leakage into shallow aquifers call for robust
monitoring and risk management technologies (Celia et al., 2015; Zheng et al., 2021, 2022). While current
monitoring methods can track the movement of the injected CO2 plume, accurately quantifying its volume and
migration path remains a challenge for monitoring and verification purposes (Bui et al., 2018). Moreover, pre-
dicting the dynamics of pressure buildup and CO2 migration is essential for guiding decision‐making (Zheng
et al., 2021) and for assessing real‐time risks throughout the life cycle of a project (Ajayi et al., 2019).

RESEARCH ARTICLE
10.1029/2024WR037953

Special Collection:
Advancing Interpretable AI/ML
Methods for Deeper Insights and
Mechanistic Understanding in
Earth Sciences: Beyond
Predictive Capabilities

Key Points:
• Novel physics‐encoded architecture:

The Fluid Flow‐based Deep Learning
(FFDL) architecture features a fluid
flow physics‐based encoder and a
residual‐based processor, together with
a physics‐based operator to capture
physical relationships

• Flexibility and performance:
FFDL combines the flexibility of deep
learning models with the structure of
fluid flow equations, resulting in
superior performance compared to
standard deep learning models such as
RUNET

• Application to geologic CO2 storage:
The model is applied to predict the
evolution of pressure and saturation
fields during geologic CO2 storage
under dynamic injection rates and
permeability variations

Correspondence to:
B. Jafarpour,
behnam.jafarpour@usc.edu

Citation:
Qin, Z., Liu, Y., Zheng, F., & Jafarpour, B.
(2025). A fluid flow‐based deep learning
(FFDL) architecture for subsurface flow
systems with application to geologic CO2
storage. Water Resources Research, 61,
e2024WR037953. https://doi.org/10.1029/
2024WR037953

Received 11 MAY 2024
Accepted 13 DEC 2024

© 2025. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non‐commercial and no modifications or
adaptations are made.

QIN ET AL. 1 of 33

https://orcid.org/0000-0002-5776-9094
https://orcid.org/0000-0003-1071-5299
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.AIMLEARTHSCI
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.AIMLEARTHSCI
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.AIMLEARTHSCI
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.AIMLEARTHSCI
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.AIMLEARTHSCI
mailto:behnam.jafarpour@usc.edu
https://doi.org/10.1029/2024WR037953
https://doi.org/10.1029/2024WR037953
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024WR037953&domain=pdf&date_stamp=2025-01-27


Reliable prediction of the CO2 plume migration often requires spatial and temporal analysis, potentially involving
detailed simulation models. The injection of CO2 into subsurface formations triggers a complex multi‐
component, multiphase flow system. The complex relationships involving miscibility, capillary pressure, and
relative permeability, as well as coupled physics lead to nonlinear coupled systems of partial differential equa-
tions (PDEs) that are not trivial to solve (Bandilla et al., 2015). Furthermore, field‐scale geologic CO2 storage
(GCS) projects span extensive spatial and temporal scales, including both injection and post‐injection periods
(Ajayi et al., 2019; X. Jiang, 2011). Therefore, numerical simulation for GCS at the field scale can become
computationally prohibitive, particularly for complex tasks such as optimization and uncertainty quantification.
Another significant challenge is estimating the time‐varying storage capacity of the geologic formations, which is
influenced by geologic conditions, injectivity and field development plans (Gorecki et al., 2015). Accurate
quantification of uncertainty and potential risks typically involves multiple simulation runs, which can impede the
implementation of real‐time analysis and risk assessments in GCS projects. Consequently, there is a growing need
for innovative approaches that can provide accurate and efficient real‐time monitoring and forecasting of CO2
plume migration and pressure buildup during GCS operations.

In recent years, deep learning (DL)‐based approaches have emerged as promising alternatives to traditional
numerical simulations for predicting the spatial‐temporal evolution of fluid dynamics in the subsurface. Spe-
cifically, convolutional neural networks (CNNs) that have demonstrated a strong capability for processing image
data have found widespread application in predicting the spatial and temporal evolution of subsurface flow
systems. Zhu and Zabaras (2018) proposed a fully convolutional encoder‐decoder architecture to approximate the
mapping from permeability to pressure and velocity maps for a 2‐dimensional steady‐state Darcy flow problem.
Mo, Zhu, et al. (2019) extended the work in Zhu and Zabaras (2018) to predict the responses from a dynamic
multiphase flow problem at different time steps. Y. Wang and Lin (2020) designed a custom architecture tailored
for single‐ and two‐phase flow systems, incorporating sparsely connected layers to account for the inherent sparse
input‐output interaction.

Among the family of CNNs, U‐Net (Ronneberger et al., 2015) was originally designed for biomedical image
segmentation and has emerged as a mainstream model for prediction tasks in the subsurface domain (Z. Jiang
et al., 2021; H. Tang et al., 2021; Wen, Tang, & Benson, 2021; Yan, Harp, Chen, & Pawar, 2022). U‐Net excels in
capturing complex patterns by retaining multi‐scale details of input images through skip connections. This feature
of U‐Net facilitates the integration of high‐resolution details, reduces the search space of model parameters, and
mitigates the gradient vanishing issue often encountered in deep architectures. Yan, Harp, Chen, and
Pawar (2022) proposed a physics‐constrained smoother to enhance the pressure prediction generated by U‐Net.
Their approach incorporates the time step as an additional input, allowing the U‐Net model to predict pressure or
saturation at different time steps. This method does not explicitly capture the dynamics of the flow system.
Instead, it approximates a static mapping conditioned on the time step. Alternatively, spatial‐temporal predictions
can also be achieved using auto‐regressive architecture (Z. Jiang et al., 2021; Mo, Zabaras, et al., 2019), recurrent
architecture (M. Tang et al., 2020) or by jointly predicting all time frames (Wen et al., 2022, 2023; Wen, Hay, &
Benson, 2021). M. Tang et al. (2020) introduced a combined model called Recurrent R‐U‐Net that integrates
Residual U‐Net (R‐U‐Net) (Wen, Tang, & Benson, 2021) with convolutional long short‐term memory
(ConvLSTM) network (Shi et al., 2015) to capture the evolution of saturation and pressure in the 2D two‐phase
waterflooding problem. This combined architecture was later extended to address 3D flow problems in water-
flooding (M. Tang et al., 2021) and CO2 sequestration (M. Tang et al., 2022). Different from the recurrent ar-
chitecture, Wen et al. (2023) proposed a nested framework of DL models for 4D spatial‐temporal prediction of
pressure and saturation in a joint way by utilizing Fourier Neural Operator (FNO) (Li et al., 2020). Their
methodology involves dividing a large reservoir into multiple scales (levels), with each level employing an FNO
model to predict either pressure or saturation. By combining the FNOs of each level sequentially, the states of the
entire reservoir can be predicted. Unlike the recurrent nature of ConvLSTM, the FNO approach predicts all time
steps simultaneously, enabling parallelized prediction across the time domain. However, the FNO's 4D archi-
tecture results in a significantly larger number of trainable parameters, with approximately 80–150 million pa-
rameters for each level, making it computationally demanding and potentially resource‐intensive when extending
it to more complex problems.

Despite the demonstrated effectiveness of DL models, the approaches mentioned above have limitations and are
tailored to specific scenarios. Notably, in GCS projects that can span decades for injection and potentially much
longer for the post‐injection period, the predictive model's capability and flexibility to forecast over arbitrary time
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frames are crucial. However, existing DLmodels are constrained to predicting within fixed periods and encounter
challenges in long‐term predictions (which require extrapolating power). Deep learning models have limited
extrapolation power and do not provide reliable predictions beyond the data distribution defined by the training
set (Willard et al., 2022), leading to the out‐of‐distribution (OOD) generalization problem. As reflected in Mo,
Zhu, et al. (2019), the prediction over the OOD time steps becomes an extrapolation task that can challenge deep
learning models, as the saturation predictions during the extrapolation may become physically inconsistent. This
is particularly important for GCS projects that require long‐term prediction horizons. Another important feature is
the flexibility of the model in terms of providing predictions over different development scenarios. For instance,
the models should be able to capture the response of the storage formations to time‐varying controls, which is
important in optimizing the performance of the field by dynamically managing the injection strategies based on
the in‐situ reservoir conditions and monitoring data (Pawar et al., 2015).

To enhance predictive capabilities and overcome limitations, an emerging and active research field focuses on
integrating physical principles and domain knowledge into neural networks (NNs) (Faroughi et al., 2023; Willard
et al., 2022). A flexible approach is to incorporate governing equations into the loss function to constrain the
neural networks during training, known as Physics‐informed Neural Networks (PINNs) (Raissi et al., 2019). The
PINN framework offers a flexible implementation across various physical systems and has found successful
applications in the subsurface domains (Shokouhi et al., 2021; N. Wang et al., 2020; Yan, Harp, Chen, Hoteit, &
Pawar, 2022). However, physics‐informed approaches often struggle with adhering to boundary conditions, as
they implement physical constraints in a “soft” manner. Furthermore, the inherent complexity of multiphase flow
in heterogeneous porous media presents challenges in implementing the closed‐form residuals of nonlinear PDEs
as loss functions (Yan, Harp, Chen, Hoteit, & Pawar, 2022). The training of deep learning models using physics‐
informed loss functions without labeled data can be affected by the complexity and nonlinearity of the integrated
physics. The presence of complex governing equations can lead to highly nonlinear and non‐convex loss func-
tions, complicating the training process (Fuks & Tchelepi, 2020). These issues may challenge the use of data‐free
approaches in more complex problems, including high‐dimensional and highly nonlinear systems (Cuomo
et al., 2022; Muther et al., 2023).

Another fit‐for‐purpose alternative involves hard‐encoding the underlying physics into the architecture of neural
networks, endowing the resulting models with an inductive bias tailored to specific physical problems (Faroughi
et al., 2023; Karniadakis et al., 2021). In contrast to physics‐informed approaches, physics‐encoded architectures
impose hard constraints. By capturing the underlying physical dependencies among variables, these architectures
demonstrate their connections to Ordinary Differential Equations (ODEs) (E, 2017; E et al., 2017; Lu et al., 2018)
and PDEs (Long et al., 2018, 2019; Rao et al., 2021; Ruthotto & Haber, 2020). Long et al. (2018, 2019) proposed
PDE‐Net to learn PDEs from data. In their work, the CNN is combined with Residual Network (ResNet) (He
et al., 2016) to approximate the evolution of PDE with the forward Euler as the temporal discretization. Rao
et al. (2021) introduced the product block to emulate the governing terms in PDEs. Their study utilizes con-
volutional layers to learn spatial dependencies and employs a recurrent form of ResNet for approximating
temporal evolution. The resulting DL model has shown good performance in extrapolation tasks. More recently,
Dulny et al. (2022) proposed NeuralPDE to combine NeuralODEs (Chen et al., 2018) with the Method of Lines
(MOL) using CNNs to approximate the spatial component in PDEs. They state that CNNs can approximate the
MOL, a numerical method of solving time‐dependent PDEs by representing them as systems of ODEs through
spatial discretization. Nonetheless, these studies tend to simplify the governing equations and approximate the
dynamics in an explicit form.

In this study, we propose a novel physics‐encoded DL model, named Fluid Flow‐based Deep Learning (FFDL),
for predicting the spatial‐temporal evolution of the pressure and saturation in geologic CO2 storage. To bridge the
gaps in the existing models, the FFDLmodel is designed to handle time‐varying well controls and to provide long‐
term predictions. The architecture of FFDL primarily comprises a physics‐based encoder for constructing
physically meaningful latent variables, a residual‐based processor for the recurrent prediction of latent variables, a
control encoder for constructing a latent representation of sink or source term, and a decoder for approximating
the mapping from latent variables to outputs, namely pressure and saturation. The physics‐based encoder, along
with the control encoder, can construct different governing terms in the PDEs for multiphase flow, including
accumulation, advection, and sink/source terms. Similar to the previous works (Dulny et al., 2022; Long
et al., 2019; Rao et al., 2021), the convolutional layers are employed to capture the spatial dependencies.
However, our model extends beyond these by (a) introducing physics‐based operators as the activation functions,
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(b) constructing latent representations of the governing terms to better approximate the dynamics, and (c)
updating the latent governing terms in a coupled and implicit form. We also present a modified Recurrent R‐U‐
Net, based on the work of M. Tang et al. (2022), as a baseline model due to its similar architecture and capability
for extension to time‐varying control and arbitrary time steps. The predictive performance of FFDL is investi-
gated using a field‐scale model of GCS in a saline aquifer. Our results show that FFDL outperforms the Recurrent
R‐U‐Net on test sets featuring unseen permeability, well controls, and time frames. While the developed deep
learning framework is capable of handling various inputs, we investigate its prediction and extrapolation per-
formance in specific scenarios by considering variations in permeability and injection rates. We also evaluate the
prediction performance of FFDL both within and beyond the training data range, that is, interpolation and
extrapolation tasks, respectively.

The remaining sections of this paper are organized as follows. Section 2 presents the problem statement for the
spatial‐temporal prediction task and introduces the architectures of the proposed physics‐based encoder and
residual‐based processor. In Section 3, we provide a brief overview of the experimental setups and describe the
modifications made to Recurrent R‐U‐Net. The experimental results and discussions are presented in Section 4.
Finally, Section 6 offers conclusions on this work and highlights the advantages of the proposed model.

2. Methodology
2.1. Problem Statement

This study addresses a spatial‐temporal prediction task governed by a set of coupled PDEs within a 3D reservoir
composed of grid blocksD ⊂ R3. The prediction task can be formulated asX = F(xt,m,U) , given the inputs xt

as the dynamic states at time step t, m as parameters, and U as future controls. The output sequence
X = {xt+ 1,xt+ 2,… } represents the dynamic variables over the subsequent time steps, and the operator F de-
notes the mapping from inputs to outputs. For each coordinate ω ∈ D, the dynamic variable xt(ω) at time step t
consists of pressure pt(ω) ∈ R and saturation of non‐wetting phase St

n(ω) ∈ R. The input parameters
m(ω) ∈ Rdm characterize the model parameters, such as permeability, porosity, grid volume, and elevation, at
point ω. The control sequence U = {ut+ 1,ut+ 2,… } denotes well controls over future time steps. At any given
step t, the control variable ut can be the bottom‐hole pressure or flow rate. The value of each grid cell
ut(ω) ∈ Rdu corresponds to the control value (e.g., injection rate) at a well location ω and is zero if the cell does
not contain a well. Superscripts dx, dm, and du indicate the dimensions of dynamic states, input parameters, and
control variables at a point ω, respectively. The goal of this work is to approximate the operator F with the
proposed deep learning model Fθ, where θ represents the trainable parameters. In this paper, variables denoted in
bold represent high‐dimensional tensors, while those not in bold refer to scalars. For brevity, we primarily focus
on the dimensionality of high‐dimensional tensors at individual spatial points ω, rather than the entire spatial
domain.

In this approach, we avoid the direct learning of the pressure and saturation dynamics. Instead, we convert these
variables into physically meaningful latent variables and learn the dynamics in latent space. The latent repre-
sentation zt = {zt

acc, zt
adv, zt

src} consists of three components representing the accumulation, advection, and sink/
source terms of the governing PDEs in the latent space, respectively. As depicted in Figure 1, the proposed deep
learning model mainly consists of the encoder, processor, control encoder, and decoder modules. Initially, the
encoder provides an initial estimation of the first two latent variables for the next time step, z̃t+ 1

acc and z̃t+ 1
adv , using xt

and m as inputs. Concurrently, the control encoder provides an initial estimation of the latent variables z̃t+ 1
src given

the control variables ut+ 1. The processor receives these three initial estimations as input and generates the
updated latent variables zt+ 1

acc and zt+ 1
adv as outputs. These outputs are then sent to (a) the decoder for the prediction

of the dynamic variables xt+ 1, and to (b) the processor itself for the estimation of the new latent variables z̃t+ 2
acc and

z̃t+ 2
adv . The decoder takes the updated latent variables zt+ 1

acc and zt+ 1
adv , as well as the static variable m, as inputs. By

including m, the decoder is designed to decouple the effects of parameters from the latent variables, functioning as
the inverse of the encoder. In a recurrent manner, the processor utilizes the previous latent variables as initial
estimations and updates them for the next time step by integrating zt+ 1

src as external inputs. To articulate the
model's function, the process X = F(xt,m,U) can be modularized as follows:
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{z̃t+1
acc , z̃

t+1
adv} = FθInputToLatent(x

t,m),

{z̃t+n
src } = {FθControlToLatent(u

t+n)},n = 1,2,… ,

{zt+n
acc , z

t+n
adv} = {FθLatentToLatent( z̃

t+1
acc , z̃

t+1
adv , z̃

t+1
src )},n = 1,2,… ,

{xt+n} = {FθLatentToOutput( z
t+n
acc , z

t+n
adv ,m)},n = 1,2,… ,

(1)

where, the operators FθInputToLatent, FθControlToLatent, FθLatentToLatent, and FθLatentToOutput represent the encoder, control encoder,
processor, and decoder modules, respectively.

2.2. Physics‐Encoded Deep Learning Model

One of the main contributions of this work is the design of the encoder and processor modules, as depicted in
Figure 2. In contrast, the control encoder and decoder are implemented using standard convolutional layers with
simpler configurations. This subsection delineates (a) the physical operators used in the encoder, and (b) the
detailed architectures of the encoder and processor. A comprehensive description of the governing equations for
geologic CO2 storage is provided in Appendix A. The explanation of the control encoder and decoder is provided
in Appendix B.

In our model, the encoder is designed to capture the relationship between the latent representations of the gov-
erning terms (i.e., accumulation and advection) and various input variables (e.g., pressure, saturation, perme-
ability, etc.) using physical operators. Recent works have designed neural operators to either (a) construct the
latent variables in the spectral domain (Li et al., 2020; Wen et al., 2022; Xiong et al., 2023) or (b) introduce high‐
frequency features to the DL model (H. Wu et al., 2023). Although these advanced architectures effectively
address the issue of spectral bias (Rahaman et al., 2019; Tancik et al., 2020), the constructed latent variables lack
interpretability, resulting in a black‐box architecture. In contrast, we adopt the concept of physical operators to
map the input variables to physically meaningful latent variables that represent accumulation and advection

Figure 1. Overview of the proposed Fluid Flow‐based Deep Learning (FFDL) model for predicting spatial‐temporal pressure and saturation in geologic CO2 storage.
The process is applied to the entire reservoir with four modules: the physics‐based encoder and control encoder to project input into physically meaningful latent
variables; the residual‐based processor to evolve the latent variables given well controls; and the decoder to project latent variables back to pressure and saturation.
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terms. This design is inspired by the Operator‐Based Linearization approach (Voskov, 2017), which represents
the governing terms as combinations of operators and linearizes them within the parameter space (pressure,
saturation, and component) to facilitate the application of numerical solvers.

Two primary motivations underpin the transition from input variables to physics‐based latent representations.
First, the governing equations of the system involve implicit and nonlinear dependencies on pressure and satu-
ration, challenging the derivation of explicit update forms. Previous studies have utilized ResNet (or skip con-
nections) for direct updates of variables in explicit form. These methods often rely on simplifications of PDEs (J.
Nagoor Kani & Elsheikh, 2019; Y. Wang & Lin, 2020) or are tailored to specific problem characteristics (Rao
et al., 2021). In contrast to direct updates of dynamic variables, our method focuses on the dynamics within the
latent space by mapping them onto physics‐based latent variables. This design circumvents the assumptions
required by previous works, offering a more thorough treatment of the underlying physics. Second, predicting the
dynamics within the latent space offers our model flexibility and generalizability. The physics‐based encoder can
flexibly adapt to various physical terms, such as capillary and gravity terms, through the design of physics‐based
operators. Moreover, the physical operators enable our model to effectively generalize across diverse input
variables and learn the physical relationship between diverse inputs and outputs. Consequently, this design
potentially extends the applicability of our model to various tasks and scenarios.

2.2.1. Physical Operators

For geologic CO2 sequestration sites, such as saline aquifers, the system consists of two primary phases: a water‐
rich phase and a CO2‐rich phase. In this work, we simplify the CO2‐brine system to an immiscible two‐fluid‐
phase system with no internal component gradient. As a result, the mass balance equation can be written in
terms of phase‐based balance equations:

∂
∂t
(ϕSξρξ) + ∇ ⋅ (ρξvξ) = ρξq̃ξ, ξ ∈ {w,n}, (2)

where ϕ is the porosity; Sξ and ρξ are the saturation and density of phase ξ, respectively; vξ is the volumetric flux
vector for phase ξ; q̃ξ is external sources or sinks of volumetric rate per unit volume of phase ξ. The phase ξ is n for
the non‐wetting phase (supercritical CO2) and w for the wetting phase (brine).

Figure 2. Overview of the physics‐based encoder (left) and the residual‐based processor (right). Each circle represents a variable corresponding to a single voxel in the
3D representation of the reservoir. The encoder consists of three stages: (1) mapping the inputs (dynamic and static) to physical features, (2) mapping previous features
to hidden features, and (3) calculating physical latent variables. For each time step, the processor utilizes a series of residual layers to iteratively update the latent
variables. The operator block incorporates non‐parametric operators, including element‐wise product, addition, and subtraction. The forward passing operation involves
directly passing the variable to the next layer without any additional transformations or modifications.
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We rewrite the Equation 2 as a combination of operators in an algebraic form for the whole reservoir in three‐
dimensional space D:

rξ(x,m,u) = ( zacc,ξ(x) − zacc,ξ (xt− 1)) − zadv,ξ(x,m) + zsrc,ξ(x,u) = 0, (3)

where rξ is the residual of the governing equation for phase ξ over the entire reservoir; zacc,ξ, zadv,ξ, and zsrc,ξ are the
accumulation, advection, and sink/source terms for phase ξ, respectively.

The governing terms are calculated through the physical operators. Detailed derivation of the governing equations
and operators are provided in Appendix A. Here, we define the operators as follows

zacc,ξ(x) = cϕ ◦ Sξ ◦ ρξ = (1 + cr ◦ (p − pref )) ◦ Sξ ◦ ρξ, (4)

zadv,ξ(x,m) = a(m) ◦∑
l

βξ,l(x) ◦ bl(x,m), (5)

zsrc,ξ(x,u) = a(m) ◦ ρξ ◦ qξ = a(m) ◦ ρξ ◦ V ◦ q̃ξ, (6)

a(m) = Δt IPV , (7)

βξ,l(x) = λξ ◦ ρξ, (8)

bl(x,m) = T l
m ◦ Δψ l

ξ = T l
m ◦ (ψv

ξ − ψu
ξ), (9)

where the symbol ◦ represents the element‐wise product; cϕ is defined as an update multiplier for the initial
porosity; cr, pref , and V are rock compressibility, reference pressure, and grid volume, respectively; qξ is the
volumetric flow rate for phase ξ; Δt is a scalar and represents the time interval; IPV is the inverse of the initial pore
volume of a grid cell ϕ0V; λξ is the mobility of phase ξ; T l

m is the geometric part of the transmissibility of interface
l between two grids u and v; Δψ l

ξ is the phase potential difference between the two grid cells u and v, of which the
phase potentials are ψu

ξ and ψv
ξ, respectively. For the design of the encoder, the phase potential is simplified by

neglecting the capillary pressure and represented as ψξ = p + ρξ ◦ D. The variable D = gd refers to the
gravity term defined as the product of the gravitational acceleration (g) and the elevation (or depth) of grid cells
(d). The parameter m is defined as a set of three components {Tm, IPV ,D} .

2.2.2. Physics‐Based Encoder

The encoder consists of three stages in a sequence (See Figure 2a). The first stage of the encoder takes the dy-
namic variables x and parameter m as inputs. The output from the first stage is a set of physical features f used in
the operators and defined as follows:

f = {cϕ,ρξ,λ,Δp,Δ(ρξ ◦ D)}. (10)

The dependencies of cϕ and ρξ on pressure and the dependency of λξ on pressure and saturation are parameterized
using fully‐connected (FC) NN, which is named state‐related operator (Figure 3a). In this work, we parameterize
the state‐related operator using a two‐layer fully connected NNwith the hidden unit do. The Gaussian Error Linear
Unit (Hendrycks & Gimpel, 2023) serves as the nonlinear activation function after each layer. Features Δp and
Δ(ρξ ◦ D) are the differential pressure and gravity terms used in the potential difference Δψ, which are
calculated through the spatial‐related operator (Figure 3b). In a structured grid system, p and D are first padded
with reflection padding around the edges of tensors, which serves as a closed boundary. Given the padded terms,
Δp and Δ(ρξ ◦ D) are computed along the x‐, y‐, and z‐directions. The differential operator is implemented by
applying the discretization stencil 1

2 × [− 1,0,1] along each of the three directions.

In the second stage, convolutional layers are used to project all the components of dynamic variable x, input
parameters m, and physical feature f into a high‐dimensional hidden feature h. Each component of the hidden
feature h has a dimensionality of dh at the point ω. Hidden features are then passed to the operator blocks defined
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in Equations 4–9. The operator blocks return the high‐dimensional representations of the accumulation and
advection terms. The goal of extending the feature dimensionality before the operator blocks is to project the
physical relationships in a high‐dimensional space. Instead of applying nonlinear functions, the element‐wise
product is used to introduce nonlinearity in the encoder.

In the third stage, we further map the accumulation and advection terms into a high‐dimensional latent space with
the dimension of dl (dl > dh) . Simultaneously, the latent variables are downsampled through the convolutional
layers, reducing the spatial dimension by a factor of 2. The outputs of this stage are the latent variables zt

acc and
zt
adv. The downsampling is employed to increase the receptive field of the convolutional layers while reducing the
GPU memory demand.

While the notation of latent variables does not specify the fluid phase, the latent variables are computed separately
for the wetting and non‐wetting phases and then concatenated. As a result, each latent variable sent to the next
layer encompasses the latent representations for the two phases. As shown in Figure 2a, the dynamic input x is
defined for the previous time step t − 1, while the latent variable z corresponds to the current time step t.
Therefore, the purpose of the encoder is to generate an initial estimate of the latent variables for time step t. These
latent variables will be further updated by the processor, taking into account the external effect of the control
variable. The encoder FθInputToLatent can then be decomposed into three stages as follows:

f = FθInputToFeature(x,m),

h = FθFeatureToHidden( f ,x,m),

{zacc, zadv} = FθHiddenToLatent(h),

(11)

where FθInputToFeature, FθFeatureToHidden, and FθHiddenToLatent refer to the three stages of the physics‐based encoder, respectively.
The dimensions do, dh, and dl in these three stages are the hyperparameters defined by users. The selection of
these hyperparameters and their feasible ranges are provided in Appendix B.

Neural networks parameterize the state‐related operator in the first stage with do hidden units and learn the
nonlinear dependencies with complicated formulas, such as Equation of State (EoS). In contrast to the param-
eterization of the state‐related operator, the spatial and physical operator blocks are non‐parametric and serve as
hard constraints to enforce adherence to the underlying physics.

Figure 3. Illustration of (a) state‐related operator and (b) spatial‐related operator in the first stage of the physics‐based
encoder. The state‐related operator is parameterized by a fully connected neural network. The differential pressure (or fluid
potential) is calculated under a closed boundary, which is approximated by reflection padding.
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2.2.3. Residual‐Based Processor

The processor is implemented as a variant of recurrent neural network with a customized recurrent unit, as
illustrated in Figure 2b. The inputs to the processor are the governing terms in the latent space zt to represent the
accumulation zt

acc, advection zt
adv, and sink/source zt

src for wetting and non‐wetting phases. The latent represen-
tation of the sink/source term comes from the control encoder FθControlToLatent. Each customized recurrent unit, also
referred to as a processor block, consists of Nrl residual layers that iteratively update the latent variables zt

acc, zt
adv,

and zt
src, where Nrl, denotes the number of residual layers. To make the proposed model more memory‐efficient

and to increase the receptive field of the convolutional kernel, we further reduce the spatial dimension of the latent
variables zt

acc, zt
adv, and zt

src ∈ RD× dl by a factor of 2 and simultaneously project them onto the feature space with
a higher dimensionality of dr (dr > dl). The resulting latent features are used to calculate the residual term δzt,
which is then projected back to the original dimension D × dl and added to the latent variable zt.

The residual layer updates the latent variables based on the concept of the residual for governing equations. For a
numerical solver, the Newton‐Raphson method is commonly applied, which is written as:

J(xk) (xk+1 − xk) = − r(xk), (12)

where J is the Jacobian matrix at the inner iteration step k of the nonlinear solver; r(xk) denotes the residual of the
governing equations for iteration k.

In this study, the design of the processor is inspired by the Newton‐Raphson method. Instead of iteratively
updating the dynamic variable xk, we update the latent variables and parameterize the update procedure using
neural networks. First, we rewrite the Equation 12 as follows:

δxk = xk+1 − xk = − (Jk)
− 1rk

≈ F( rk,xk) ≈ FθResidualToDiff ( r
k, zk).

(13)

The dependency of input difference δxk on terms xk and rk is parameterized by the operator FθResidualToDiff . To further
facilitate the update, we introduce another operator FθDiffToDiff to convert the difference δxk to the latent space, which
is shown as follows:

δzk = zk+1 − zk ≈ FθDiffToDiff (δxk), (14)

where FθDiffToDiff approximates the mapping between the input difference δxk and the latent difference δzk. Finally,
δzk can be written as:

δzk = FθDiffToDiff (FθResidualToDiff ( r
k, zk)). (15)

For brevity, we neglect the superscript k in the following derivation of the processor unit. For each residual layer
within the processor unit, we first calculate the residual term r as follows:

rt = zt
acc − zt− 1

acc + zt
adv + zt

src. (16)

Here, the negative sign is integrated into the advection term without the loss of correctness. The above equation is
similar to Equation 3, with the distinction that each term in Equation 3 corresponds to a specific phase. The latent
variables in the above equation encompass representations for both phases. In the first residual layer of each
processor block, the terms zt

acc and zt − 1
acc in Equation 16 are identical. In other words, the accumulation term zt − 1

acc

sent from the previous processor will serve as both the previous state zt − 1
acc and the current state zt

acc. Consequently,
the previous state zt − 1

acc remains fixed, while the current state zt
acc is updated in subsequent residual layers.

After calculating the latent residual rt, each of the latent variables (i.e., zt
acc, zt

adv and zt
src) is multiplied by rt, and

their products are sent to the operator FθResidualToDiff as inputs, expressed as follows:
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rt
z = FθResidualToDiff

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

zt
acc

zt
adv

zt
src

⎤

⎥
⎥
⎥
⎥
⎦
◦

⎡

⎢
⎢
⎢
⎢
⎣

rt

rt

rt

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠
. (17)

In this step, the output rt
z refers to the term − (Jk)

− 1rk in the latent space. Then, the latent residual term δzt can be
derived as follows:

dt
z = FθLatentToDiff ( z

t), (18)

δzt = FθDiffToDiff (d
t
z ◦ rt

z), (19)

where the operator FθLatentToDiff is to transform the latent variable into a new term to introduce nonlinearity. Then, the
operator FθDiffToDiff takes the product dt

z ◦ rt
z as input and returns the latent residual term δzt. Therefore, in each

residual layer, the latent variable zt is updated as

zt = zt + δzt. (20)

In this study, the design of the residual layer is heuristic, as the updating procedure is performed in a high‐
dimensional latent space and is parameterized by neural networks. The high‐dimensional representation en-
ables the latent variable to capture comprehensive information about the input variables. The processor unit in this
study is referred to as a residual‐based processor, as it is composed of residual layers and draws inspiration from
the concept of residuals in the governing equations.

3. Experimental Setup
In this study, we conduct a comprehensive evaluation of the proposed physics‐encoded DL model through three
distinct experiments. First, we assess the predictive capability of the model using unseen permeability inputs in
Section 4.1 and compare our model with the Recurrent R‐U‐Net over the public data set proposed by M. Tang
et al. (2021). Second, we investigate the model's performance in the presence of unseen pairs of control variables
and permeability inputs (Section 4.2). This assessment requires the model to generalize and handle complex and
diverse scenarios. Lastly, we explore the model's extrapolation capability by applying it to the prediction over the
post‐injection period while the training set only covers the injection period (Section 4.3). This extrapolation task
poses a significant challenge due to the distinctive dynamics involved. In addition to these three experiments, we
investigate the effect of the physics‐based encoder on the latent representations of the governing terms by
replacing the physics‐based encoder with a traditional convolutional encoder (Section 4.4).

In addition to the comparison based on publicly available data sets (M. Tang et al., 2021), we also applied our
model to a set of simulated data sets generated by a synthetic 3D simulation model of deep saline aquifer (Ap-
pendix C). The training data sets include simulation models for both single‐well and two‐well scenarios, intro-
ducing sufficient diversity in the data set. However, we test our model on the two‐well scenario only, as it is more
complex than the one‐well scenario. The simulation model consists of CO2 injection over 15 years, followed by a
post‐injection period of 85 years. For the third experiment, we specifically utilize the initial 15 years of the post‐
injection as our test set. This selection is based on the observation that the pressure and plume dynamics reach a
quasi‐steady state beyond this time frame and do not show observable changes over time. The simulated data set
consists of 30 steps, where each step represents 1 year. During the injection, the well controls are randomly
perturbed for each year while being constrained to have a total injection amount over 15 years. For detailed
information regarding the simulation model and data generation, please refer to Appendix C.

In the examples with the public data set, the models are trained to predict the whole simulation time with 10 steps
by taking the initial state and permeability as inputs, following the setup in M. Tang et al. (2021). In the other
experiments conducted in this study, however, the training process involves feeding the models with dynamic
states from any time step and predicting only the subsequent 8 years rather than the entire 15 years. Exposing the
model to dynamic inputs of different time frames can enable models to prevent overfitting and accurately learn the
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dynamics. Consequently, each training sample, comprising 16 time frames (15 years plus an initial state), is
divided into eight data samples, each spanning 8 time frames. During testing, the DL models predict the entire
15 years over injection (or 30 years over both injection and post‐injection periods) without taking any ground truth
dynamic state as input.

In the experiment on the public data set, we propose a modified version of Recurrent R‐U‐Net by making three
key modifications to the architecture of the original model proposed by M. Tang et al. (2021). These modifi-
cations were aimed at improving the model's performance and aligning it with the setup of our model to ensure
fair and meaningful comparisons. First, we replaced Batch Normalization (BatchNorm) (Ioffe & Szegedy, 2015)
in the original model with Group Normalization (GroupNorm) (Y. Wu & He, 2018). This change was motivated
by the observation that GroupNorm offers better generalizability and transferability compared to BatchNorm
(Kolesnikov et al., 2020). Second, we introduced a dummy control input to the modified Recurrent R‐U‐Net and
our model for the public data set. The control variable in the public data set is fixed over time and not included as
input in the original Recurrent R‐U‐Net. This change is to make the use of modified Recurrent R‐U‐Net and our
model consistent throughout this work. The dummy control variable for each time step is a 3D tensor, with values
of 0 for grid blocks with no well, 1 for producers, and − 1 for injectors. Lastly, we redefined the static variable m
by (a) adding IPV and D as part of the input, and (b) replacing permeability K with the term Tm.

The pressure and injection rate are normalized usingMin‐Max normalization. Saturation is not normalized since it
typically ranges between 0 and 1. To normalize the inverse grid volume IPV , we scale it by multiplying a reference
grid volume of 50 × 50 × 2.5 m3. Using a uniform layer thickness, the depth D varies from 0 to 19, representing
the depths of grid blocks from the first to the 20th layer. The term Tm contains zero values to represent the closed
boundary and exhibits a right‐skewed distributionwith amean significantly higher than themedian. Consequently,
we apply the inverse hyperbolic sine transformation to transform Tm before feeding it into a deep learning model.

The training in this study employs the Adam optimizer. In our proposed model and the modified Recurrent R‐U‐
Net, we apply the relative ℓ2‐loss (Wen et al., 2022) as the loss function, which is defined as follows:

L({S,p}t1 :t2, { Ŝ, p̂}t1 :t2) =
‖St1:t2 − Ŝt1:t2‖2

‖St1:t2‖2
+
‖ pt1 :t2 − p̂t1 :t2‖2

‖ pt1:t2‖2
, (21)

where { Ŝ, p̂}t1 :t2 represents the predicted saturation and pressure over time steps from t1 to t2. In this work, the
variance of the norms ‖St1:t2‖2 or ‖ pt1 :t2‖2 are considerably high due to the dynamic range of time frames, which
can vary widely. Using the mean squared error (MSE) loss function encourages inaccurate predictions at the start
of injection. This is mainly because the saturation of the non‐wetting phase in the initial time frames is incon-
sequential. Deep learning models that fail to predict the saturation of these time frames will still generate low
values of MSE loss. The choice of relative error as the loss function will mitigate this issue. The details of the
training process and configuration are provided in Appendix B.

4. Results
4.1. Testing on Unseen Permeability

In this experiment, we first compare three models on the public data set (M. Tang et al., 2021): the original
Recurrent R‐U‐Net (the baseline model), the modified Recurrent R‐U‐Net, and our proposed model. The data set
consists of 2,923 samples spanning 1,000 days and is generated by a numerical simulation model of a two‐phase
oil reservoir for a waterflooding problem. In this experiment, models are trained to predict oil saturation using
different amounts of training samples: 200, 500, 1,000, 1,500, 2,000, and 2,500. A separate set of 50 samples is
used for model validation, while the remaining 373 samples form the test set.

Figure 4a shows that our model consistently achieves lower test losses across all sizes of training samples
compared to the other two models. Notably, our model trained on 1,000 samples demonstrates a comparable root
mean square error (RMSE) of saturation prediction to the baseline model trained on 2,500 samples. Figure 4b
demonstrates the distribution of saturation RMSE for each time step, where the baseline model exhibits higher
mean and variance in test losses across time steps compared to our model. Both modified Recurrent R‐U‐Net and
our model accurately capture the saturation front for the 200 and 2,500 training sample cases with lower RMSE
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values. In the subsequent experiments, we will continue using the modified Recurrent R‐U‐Net for comparison
and exclude the original version. The original Recurrent R‐U‐Net has a different setup of input and does not
support time‐varying control variables.

Next, we proceed to evaluate our model in the simulation model of subsurface CO2 storage reservoir. Our
proposed model and modified Recurrent R‐U‐Net are trained using 700 simulated samples to predict pressure and
CO2 saturation over a 15‐year injection. The 700 simulated samples are then divided into 5,600 training data
samples, each of which spans eight years. The validation and test sets consist of 100 and 200 simulated samples,
respectively. The training and test sets have the same injection controls but different permeability. For brevity, we
will refer to the modified Recurrent R‐U‐Net as RUNET in the following experiments. As shown in Figure 5
(left), our proposed model consistently exhibits lower mean and variance of RMSE compared to RUNET. It is
worth noting that the saturation error exhibits increasing trends over time due to the spreading of the saturation
front. In contrast, the pressure error is more stationary, attributed to the presence of an aquifer region surrounding
the storage reservoir, which facilitates pressure dissipation and maintains it within a certain range.

Figures 6 and 7 provide 3D visualizations of saturation and pressure distributions, respectively. The errors in both
saturation and pressure tend to occur in areas where there are significant changes (or gradients). Specifically, for

Figure 4. Distributions of test losses of saturation for different models. (a) Test losses for different sizes of training samples.
(b) Test losses of saturation for different time steps. The different transparencies in panel (a) represent the various sizes of
training samples ranging from 200 to 2,500 from left to right. Each time step in panel (b) contains the six bars to represent
distributions of root mean square error values for the cases of training samples ranging from 200 to 2,500 from left to right.
“Modified” refers to the modified Recurrent R‐U‐Net. “Base” refers to the baseline R‐U‐Net. “Ours” refers to our model.

Figure 5. Prediction errors of normalized saturation and normalized pressure over the test set for two models: our proposed model (Ours) and modified Recurrent R‐U‐
Net (RUNET). Left: Test errors with unseen permeability; Right: Test errors with unseen control and permeability. The error band and solid line represent a 95%
confidence interval and the median of root mean square error, respectively. Subfigures (a) and (b) show the normalized saturation and pressure errors, respectively, for
test cases with unseen permeability maps. Subfigures (c) and (d) present the normalized saturation and pressure errors for test cases with both unseen controls and
permeability maps.
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saturation, the errors are prominent near the front of the CO2 plume, where the saturation values experience rapid
transitions. On the other hand, for pressure, the errors are more noticeable in the vicinity of the wells. The 3D
pressure map changes significantly over time due to variations in injection control. As reflected in Figures 6 and 7,
our model outperforms the RUNET in capturing these two distinct patterns.

Figure 6. Visualization of saturation prediction over unseen permeability. The 3D visualization in panel (a) displays the saturation distribution in the 15th year. In panels
(b, c), the 2D saturation distributions represent the x‐z planes intersecting Wells I1 and I2, respectively. These planes are depicted as transparent cross‐sections in
panel (a).
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4.2. Testing on Unseen Control and Permeability

In this experiment, we further evaluate the performances of two models (our model and RUNET) on the test set
where both control and permeability are unseen during training. The training, validation, and test sets still consist
of 700, 100, and 200 simulated samples, respectively. As depicted in Figure 8, the distribution of injection rates
differs between the training and test sets, even though both data sets have the same constraint of total injection
rate. Notably, the allocation of injection rates in the test set exhibits more significant variations compared to the
training set, demonstrating a less balanced allocation of injection rates. The allocation of the injection rate for the
test set falls outside the distribution covered by the training set. For control optimization problems, the control
variable can evolve toward its extremity during the process of optimization (Qin et al., 2023). The out‐of‐
distribution injection rate resembles the challenges caused by the extremity of the control variable in the opti-
mization task and challenges the model's robustness in handling diverse control scenarios (Qin et al., 2024).

Figure 5 (right) illustrates that the prediction performances of the two models are comparable in predicting pore
pressure, while our model is more accurate in predicting saturation than RUNET. Given the variations in control
variables in the test set, predicting saturation and pressure becomes more challenging for both models compared

Figure 7. Visualization of pressure prediction over unseen permeability. In panel (b), the 2D pressure distributions represent the 17th layer of the reservoir, the layer
where injection wells are located. The pressure values are measured in MPa, and the root mean square error is also reported in MPa.
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to the previous experiment. Figures 9 and 10 provide visualizations of saturation and pore pressure predictions for
both models. In Figure 9, it can be observed that the saturation prediction from RUNET shows significant errors
around the top layer, leading to physically inconsistent results. In contrast, our model exhibits only slight dis-
crepancies near the saturation front in the top layer, indicating its improved accuracy and ability to maintain
consistency with the underlying physics. As shown in Figure 10, the pressure prediction from RUNET exhibits
errors that are evenly distributed around the wells, while the prediction error from our model is more concentrated.
This distinct behavior between the two models may be attributed to differences in their architectures and will be
further investigated in our future work.

4.3. Extrapolation Over Post‐Injection

In the previous experiments, the deep learning models were trained and tested over a 15‐year injection. During
testing, DL models predicted the future states over the same period based on different sets of inputs. In this
experiment, we extend the application of these trained models to predict 30 years, including both injection and
post‐injection. Specifically, models trained in previous experiments (Sections 4.1 and 4.2) are directly applied to
predict the last 15 years, from the 16th to the 30th year, with the initial state to be predicted saturation and pressure
in the 15th year. During post‐injection, injection rates are set to zero.

In Figure 11, the prediction performances of two models are evaluated for both injection and post‐injection
periods. It can be observed that our model consistently exhibits significantly lower prediction errors for satu-
ration than RUNET. Furthermore, our model's prediction errors remain relatively stable during post‐injection,
whereas errors from RUNET keep increasing for the saturation prediction. On the other hand, the pore pressure of
the entire reservoir becomes more uniform and converges to the boundary pressure during post‐injection.
Therefore, pressure prediction becomes less challenging for the two models, as both exhibit decreasing prediction
errors after the 15th year when the post‐injection starts. Despite the comparable performance of pressure pre-
diction for both models during the injection period (Figure 11d), our model consistently outperforms RUNET in
terms of lower mean and variance of prediction errors during post‐injection. This indicates the superior robustness
and accuracy of our model in handling the distinct dynamics of the post‐injection period.

Figure 12 visualizes three examples of the saturation predictions for two models in the 15th and 30th years. It can
be observed from all three examples that, during the post‐injection period, CO2 is dominantly driven by the
buoyant force and gets accumulated at the top layer, which is overburdened by cap rock. A common failure of
RUNET is its physically inconsistent prediction during extrapolation. As shown in the first two examples, the
predicted CO2 plume from RUNET in the 30th year shows disconnected patterns and deviates significantly from
the ground truth. In the last two examples, the prediction from RUNET exhibits a relatively low RMSE in the 15th
year, which is close to the error of our model. However, RUNET still fails to capture the CO2 migration during
post‐injection and even shrinks the CO2 plume toward the end of the prediction. On the other hand, our model can
accurately extrapolate the CO2 plume during post‐injection. Among the three models, our model accurately
predicts the saturation front compared with a slight increase in RMSE.

Figure 8. Visualization of injection control in the training and test sets. The left and middle figures depict the time‐series
injection rates for wells I1 and I2, respectively. The right figure shows the QQ‐plot of cumulative injection rates for the two
wells, illustrating the differences in the distribution between the two data sets.
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Figure 13 visualizes the pressure prediction of the 17th layer of the reservoir for two models during post‐injection.
It can be observed that the pressure dissipates during post‐injection and reaches the aquifer boundary, which
serves as a constant boundary condition due to its extensive volume. In contrast to RUNET, our model dem-
onstrates an accurate prediction of the pressure dissipation and eventual convergence to the aquifer pressure.

Figure 9. Visualization of saturation prediction over unseen control and permeability. Subfigure (a) compares the 3D saturation predictions from RUNET and our model
with the ground truth in the 15th year. Subfigures (b) and (c) compare the 2D saturation predictions from two models along the vertical cross‐section passing through
injector Well 1 and Well 2, respectively.
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These findings underscore the superior performance of our model in capturing long‐term behavior and accurately
predicting the saturation evolution beyond the injection period.

It is important to note that predicting the post‐injection period is an extrapolation task, as it falls outside the time
range covered by the training set. Extrapolation tasks can pose challenges for deep learning models, as the sta-
tistical input‐output relationship during extrapolation may deviate from what was learned from the training set. In
the case of CO2 migration, the dominant driving force changes between the injection and post‐injection periods,
which can result in a different statistical input‐output relationship. This change in driving force can undermine the
prediction performance of deep learning models. Therefore, accurate prediction during post‐injection requires the
models to capture the underlying physics of the system, rather than solely relying on the learned statistical
relationship from the training set.

4.4. Investigation of Latent Representation

To further investigate the effect of introducing the physics‐based encoder on the prediction performance, we
introduce an additional DL model. This model shares the identical modules as the proposed physics‐encoded DL

Figure 10. Visualization of pressure prediction over unseen control and permeability. The pressure values are measured in MPa, and the root mean square error is also
reported in MPa. Subfigure (a) compares the 3D pressure predictions from RUNET and our model with the ground truth in the 15th year. Subfigure (b) presents the
pressure profile of the injection layer from RUNET and our model compared to the ground truth from Year 1 to Year 15.
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model, with the exception that the physics‐based encoder is replaced with convolutional encoders. This alteration
facilitates a more focused investigation of the effect. The convolutional encoder comprises two separate encoders
to produce the latent representations of accumulation and advection terms, respectively. Each encoder shares a
similar architecture as the encoder in the RUNET. In the case of the accumulation term, the input exclusively
encompasses the initial states of dynamic variables (i.e., pressure and saturation). As for the advection term,
dynamic and static variables are concatenated together and fed into the encoder as input. Subsequently, the latent
variables representing the accumulation and advection terms are then sent to the processor blocks, the same as the
pathway of the physics‐based encoder.

Figure 14 illustrates the comparison between two models: one equipped with the physics‐based encoder (referred
to as “Ours”) and the other with convolutional encoders (referred to as “ConvEnc”). Both models are trained and
tested using the same setup as the second experiment (Section 4.2). The results show that both models demon-
strate similar RMSE values for pressure and saturation during injection. However, our model consistently out-
performs ConvEnc during the post‐injection period. On the other hand, as shown in Figure 15, ConvEnc
significantly outperforms RUNET in predicting pressure and saturation, encompassing both injection and post‐
injection periods. Given that all three models possess a similar number of trainable parameters (over 3
million), these results exhibit the superior performances of the physics‐based encoder and the residual‐based
processor in contrast to the convolutional encoder and ConvLSTM, respectively.

Since the governing terms follow certain PDE constraints, it is essential to construct a compact latent space. The
latent representations of accumulation and advection terms are expected to exhibit similar patterns with the true
governing terms to contain physically consistent features. Therefore, we further investigate the latent represen-
tations of two governing terms derived from our model and ConvEnc and discuss their physical meanings.
Figure 16 illustrates an example of the latent representations of accumulation (Figure 16a) and advection terms
(Figure 16b) for both our model and ConvEnc. The latent representations are the outputs of the last processor
layer. To reduce the redundancy in latent representations, we first employ Principal Component Analysis on dl
latent variables (dl = 32) for each time step separately. Here, only the first three principal components (PCs) are
visualized for brevity. Moreover, Figures 16a and 16b present the actual values of the wetting‐phase accumulation
and advection in the vertical direction in the 13th year as references.

As shown in Figure 16a, the true accumulation term is dominantly affected by saturation (Figure 16d), with only
slight variations outside the CO2 plume as affected by pressure (Figure 16c). This slight variation is because the
density of liquid‐phase water is insensitive to pressure changes and that reservoir porosity is set to be homo-
geneous in this work. The components from our model exhibit similar patterns with pressure contour and

Figure 11. Prediction errors of normalized saturation and normalized pressure over injection and post‐injection for the examples of (left) unseen permeability and (right)
unseen control and permeability. The first 15 years denote the injection, while the last 15 years denote the post‐injection where injection rates are zeros for two wells.
Subfigures (a) and (b) show the normalized saturation and pressure errors, respectively, for test cases with unseen permeability. Subfigures (c) and (d) present the
normalized saturation and pressure errors for test cases with both unseen control and permeability.
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Figure 13. Visualization of pressure prediction over the post‐injection period.

Figure 12. Visualization of saturation prediction of three different cases in the 15th and 30th years. Each case has different permeability and injection control as inputs.
The permeability map is in the unit of log10 (mD).
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saturation front, as reflected in the first and third components. The components from ConvEnc also reflect these
two features, as shown in the first PC. However, as depicted in the second PCs, the latent accumulation terms in
ConvEnc exhibit high‐frequency patterns similar to permeability. This arises from the updating process within the
processor blocks, where the latent accumulation and advection mutually influence each other. These high‐
frequency patterns are distinct from the accumulation terms depicted in Figure 16a. The residual‐based pro-
cessor model passes the latent accumulation to the next time step to approximate the dynamics of the mass balance
governing equation. Latent representations that are not aligned with the true governing terms could hinder the
learning process and lead to inefficient learning of the dynamics.

Figure 16b illustrates the PCs of latent representations of the advection term for both models. Notably, the latent
advection terms generated by our model closely align with the true values and exhibit high‐fidelity patterns. In
contrast, ConvEnc produces overly smooth latent advection patterns. This distinction between the two models
may stem from the inclusion of the physics‐based encoder. Specifically, in our model, the overall receptive field
for permeability spans only three grid blocks. This design choice prevents over‐smoothness during the calculation
of the latent advection term, thus preserving intricate details. On the other hand, ConvEnc's receptive field follows
the default setup of RUNET and spans 12 blocks, resulting in an inconsistent inductive bias with the advection
term.While ConvEnc can learn high‐fidelity patterns from the data, it requires more data to constrain its behavior,
hindering efficient learning. Despite our model's superiority over ConvEnc, we do not dive into introducing any

Figure 14. Prediction errors of normalized saturation (a) and normalized pressure (b) over injection and post‐injection for two
predictive models with different encoders: convolutional and physics‐based.

Figure 15. Distributions of test losses of (a) saturation and (b) pressure for different models.
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metrics to evaluate the physical consistency of latent variables. This aspect extends beyond the scope of this work
and could potentially be explored in future endeavors.

5. Discussion
The experimental results validate the effectiveness of our proposed model in addressing the aforementioned
limitations faced by traditional deep learning models. Our model exhibits data efficiency, as demonstrated using a
public data set (Section 4.1), and consistently outperforms traditional deep learningmodels when handling various
types of inputs (Sections 4.1 and 4.2). The physical operators enable our model to approximate the underlying
physics and learn the complex input‐output relationship efficiently. Furthermore, our model exhibits superior
performance compared to RUNET in the extrapolation to the post‐injection period (Section 4.3), where RUNET
fails to extrapolate the saturation front and generates physically inconsistent predictions. The recurrent architec-
ture, along with regular time intervals for each recurrent unit, allows our model and RUNET to effectively predict
over arbitrary lengths of time steps. Unlike RUNET, which lacks interpretability and functions as a black box, the
proposed model employs modular components, each with a specific role in capturing the dynamics of the system.

Figure 16. Visualization of the first three principal components of latent representations of (a) accumulation and (b) advection terms from two deep learning models: one
with a physics‐based encoder (left column) and one with a convolutional encoder (right column). Each row in panels (a, b) represents the evolution of a principal
component from the 9th to the 15th year. (c, d) visualize the ground truths of pressure and saturation of the first layer over the last 9 years of injection. The true
accumulation and z‐direction advection of the wetting phase are provided in panels (a, b) for reference.
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5.1. Advantages of Physics‐Encoded Framework

Integration of Physical Priors with Learning Capacity: The physics‐encoded framework is constrained by
physical priors and balances interpretability with adaptability. The physical priors are in the form of the structure
of the subsurface flow equations, without the detailed complexity of the exact processes involved in specific
systems/applications. The architecture resembles the general form of the flow equations that is applicable to a
wide range of problems. The training data related to each specific application is then used to learn the flow
behavior in the application of interest. For instance, rather than incorporating the full complexity of physics
involved in geologic CO2 storage, which involves multi‐component multiphase flow, the model incorporates the
structure of two‐phase immiscible flow dynamics. The integrated physical relation serves as an inductive bias,
tailoring the DL model's structure to flow problems, facilitating its learning of the flow behavior from training
data. During training, the parameters of the DL model are tuned to capture the specific dynamics of the systems,
which is not explicitly encoded in the prior. It is important to note that the model is not expected to capture the
physical processes that are not manifested in the structure of model nor the training data. In the cases where the
dynamics used in the training stage changes significantly during the prediction phase, additional considerations
(such as retraining with data pertaining to the new physics) may be needed to enhance the prediction power of the
model.

Flexibility and Broader Applicability: The FFDL's applicability to different subsurface reservoir settings and
time‐varying well controls makes it a valuable tool for efficient implementation of decision‐making workflows,
including inverse modeling, uncertainty quantification, and optimization. The main objective of this paper is to
introduce FFDL as a flexible, efficient, and tailored deep learning architecture for subsurface flow problems.
While the specific inputs and outputs of the model can be designed according to the objective of each study, the
examples in this paper included the variability in permeability heterogeneity and well injection controls. The
applicability of FFDL extends beyond geologic CO2 storage and the specific scenarios studied in this work.
Notably, the public data set used in Section 4.1 addresses a two‐phase immiscible fluid flow problem.

Computational Efficiency: A primary motivation for developing DL models is to accelerate predictions, as
traditional numerical simulators are computationally demanding and often limit their utility in field management
workflows. In this study, FFDL is introduced to address some of the limitations of existing DL proxy models by
incorporating physical priors. The simulated data needed to train standard DL proxy models can be computa-
tionally demanding to generate. The incorporated prior in FFDL reduces the offline training data needs (and
computational demand), as shown in our sensitivity analysis. This efficiency makes FFDL a viable option for
tasks requiring iterative and/or ensemble evaluations, such as robust optimization and closed‐loop control. Once
trained, the inference cost of FFDL is extremely low, similar to other DL models. Predictions can be produced in
near‐real‐time, typically within seconds, even for large‐scale reservoirs. In contrast, classical numerical simu-
lators may require hours or days for similar tasks. This computational advantage is especially pronounced in
workflows involving thousands of simulations, such as ensemble‐based inverse modeling or robust optimization,
where FFDL can leverage GPU‐enabled parallelization to handle multiple realizations simultaneously.

5.2. Data Support and Inductive Bias

While encoding physical mechanisms into the model architecture is expected to improve its extrapolation power,
the prediction performance also depends heavily on the information provided by the training data. As highlighted
by Wilson and Izmailov (2020), the convergence of a model toward a true solution often hinges on two key
factors: sufficient data support and appropriate inductive bias. Data support refers to the diversity and
completeness of the training data in capturing the essential dynamics of the system. Without adequate repre-
sentations of mechanisms such as dissolution or diffusion, the model lacks the necessary information to learn and
predict their effects. On the other hand, the inductive bias that is introduced through the architecture embeds prior
knowledge about the system's general behavior and guides the model toward physically plausible solutions. These
two factors are complementary: data support provides the foundation for learning, while inductive bias ensures
efficient and accurate generalization. However, caution must be exercised in using FFDL in extrapolation tasks,
especially when the dominant physics in the extrapolation problem differs significantly from the one used during
the training. For example, the subsurface conditions and physical processes that are involved during CO2 injection
are typically different from those that are present many years after stopping the injection. These factors must be
taken into account in effective design and application of FFDL (or any DL model).
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Some of the future research in this area includes improving the inductive bias used in FFDL and enhancing the
data support for it. The integration of additional physical mechanisms, such as dissolution and diffusion, can
improve the model's predictive accuracy and efficiency. Extending the physics encoded in the FFDL architecture
can be used to enhance its learning efficiency and application to more complex tasks. Increasing the diversity and
representativeness of the training data sets can also facilitate the inclusion of mechanisms that are not adequately
represented in the training data sets. This will help the model generalize better across scenarios with varying input
conditions and physical processes.

In addition to these advancements, incorporation of physics‐informed loss functions can further improve the
fidelity of the model in representing the behavior of the physical models. While PINNs have shown proficiency in
learning simpler tasks, they face challenges when applied to complex systems such as geologic CO2 storage,
where the governing PDEs exhibit high nonlinearity and complexity (Krishnapriyan et al., 2021).

Additional extensions and methodological innovations are particularly crucial for the practical deployment of
large, data‐intensive models in real‐world scenarios. The ability to generalize across diverse input conditions and
adapt to varying physical processes will significantly enhance the framework's robustness and applicability across
a wide range of subsurface engineering problems.

6. Conclusion
In this work, we propose a novel DL architecture that incorporates the general structure of the fluid flow
equations, as a form of inductive bias, to enhance its training and prediction performance. The model is used to
predict the spatial‐temporal behavior of subsurface flow systems.We applied the model to predict the evolution of
pressure and saturation during geologic CO2 storage. Traditional deep learning models, which solely rely on
learning statistical input‐output relationships, face challenges in extrapolation tasks, require large amounts of
training data, and can produce physically inconsistent predictions. To address these limitations, we introduce
FFDL as a new deep learning framework that incorporates the general form of the fluid flow physics equations
into its encoder and processor units. The new architecture improves the ability of the model to learn the gen-
eral behavior of the underlying physics. The examples in this paper considered variability in permeability het-
erogeneity and dynamic well control settings, to make predictions over both the injection and post‐injection
periods.

The flexibility and applicability of this framework are demonstrated with examples from geologic CO2 storage,
which involves complex physics than is included in the model architecture. However, integration of the incor-
porated fluid flow structure and training data from the relevant physics resulted in superior predictive capabilities
to RUNET as a well‐established DL model. The proposed FFDL model is general and can be applied to other
subsurface flow applications involving spatial‐temporal predictions, such as groundwater flow, geothermal en-
ergy, and hydrocarbon reservoirs. While this study focuses on a specific scope, future research can explore ways
to adapt this framework to broader applications by incorporating additional physical processes and employing
physics‐informed loss functions. Such adaptations may help further improve the model's accuracy and data ef-
ficiency. In summary, this work presents a novel deep learning framework that combines the benefits of data‐
driven models (including efficiency, learning capacity, and flexibility) with physics‐based inductive bias
(including interpretability and extrapolation power) to develop an efficient and proxy model to enable compu-
tationally complex subsurface flow tasks. By embedding physical knowledge directly into the architecture, the
model offers a promising framework for developing interpretable and data‐efficient models for adoption in
various subsurface flow applications.

Appendix A: Governing Equations
We adopt the Operator‐Based Linearization approach (Voskov, 2017) to derive governing equations and
implement the finite‐volume discretization for the mass balance equation. For a system with nc components and
np phases, the transport equations can be written as follows:

∂
∂t
(ϕ∑

np

ξ=1
xi,ξρξSξ) + ∇ ⋅ ∑

np

ξ=1
( xi,ξρξvξ) =∑

np

ξ=1
xi,ξρξq̃ξ, i = 1,… ,nc, (A1)
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where ϕ is porosity; xi,ξ is the mass fraction of component i in phase ξ; ρξ is the density of phase ξ; Sξ is the
saturation of phase ξ; vξ is the volumetric flux vector (or Darcy flux) for phase ξ; q̃ξ is the external sources or sinks
of volumetric rate per unit volume in phase ξ.

For a geologic CO2 storage site where CO2 is injected into the deep saline aquifer, the phases ξ ∈ {w,n} could be
w for the wetting phase (brine) and n for the non‐wetting phase (supercritical CO2). The multiphase extension of
Darcy's equation is applied to describe the flow of each phase and is written as:

vξ = − K
kr,ξ
μξ

(∇pξ − ρξg∇d) = − λξK(∇pξ − ρξg∇d), ξ ∈ {w,n}, (A2)

where K is the permeability tensor, kr,ξ is the relative permeability, μξ is the phase viscosity, λξ = kr,ξ/μξ is the
phase mobility, pξ is the phase pressure, g is the gravitational acceleration, and d represents the depth.

The capillary pressure is defined as the difference between the pressure of two phases and is a function of
saturation:

pc (sw) = pn − pw, (A3)

where pn and pw are the pressures of non‐wetting (n) and wetting phases (w).

By applying the finite‐volume discretization and backward Euler approximation in time, the mass balance
equation can be discretized as:

V

⎛

⎜
⎝(ϕ∑

np

ξ=1
xi,ξρξSξ)

(n+1)

− (ϕ∑

np

ξ=1
xi,ξρξSξ)

(n)⎞

⎟
⎠

− Δt∑
l∈L

(∑

np

ξ=1
x l
i,ξ ρ

l
ξ T

l
ξΔψ l

ξ) + Δt∑
np

ξ=1
xi,ξρξqξ = 0,

(A4)

where V is the volume of the grid cell; T l
ξ is the phase transmissibility between two grid cells connected by the

interface l; Δψ l
ξ is the phase potential difference across the interface l considering pressure, capillary pressure, and

gravity; qξ is the volumetric rate of phase ξ.

In this work, we simplify the CO2‐brine system to an immiscible two‐fluid‐phase system with no internal
component gradient. Then the mass balance equation reduces to the phase‐base balance equation, written as:

∂
∂t
(ϕSξρξ) +∇ ⋅ (ρξvξ) = ρξq̃ξ, ξ ∈ {w,n}. (A5)

The discretized mass balance equation in Equation A4 is then transformed into:

V((ϕρξSξ) − (ϕρξSξ)
t
) − Δt∑

l∈L
ρ l

ξT
l
ξΔψ l

ξ = Δtρξqξ. (A6)

For the two grid cells u and v with the interface of l, T l
ξ is defined as follows:

T l
ξ =

k̄u,vAl

Lu,v
λξ = Tmλξ, (A7)

where k̄u,v is the harmonic average of permeability between the grid cells u and v; Al is the area of interface l; Lu,v
is the distance between the grid cells u and v.
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The porosity ϕ in can be represented as ϕ0 (1 + cr (p − pref )) . By denoting 1 + cr (p − pref ) as cϕ, Equation A6
can be written as:

((cϕρξSξ) − (cϕρξSξ)
t
) −

Δt
Vϕ0

∑
l∈L

ρ l
ξ λ

l
ξ T

l
mΔψ l

ξ =
Δt

Vϕ0
ρξqξ. (A8)

By presenting the Equation A8 in algebraic form and the definition in Equations 4–9, Equation A8 can be
rewritten as follows:

rξ (x,m,ut) =

( zacc,ξ(x) − zacc,ξ (xt)) − zadv,ξ(x,m) + zsrc,ξ(x,u) = 0.
(A9)

Appendix B: Implementation Details
B1. Description of Decoder and Control Encoder

At each time step t, the control encoder takes the control variable ut as input and generates the latent variable zt
src

as output. The control encoder consists of two 3D convolutional (Conv3D) layers with linear activation functions
and a kernel size of 3 on x‐, y‐, and z‐directions. The output from Conv3D layers is downsampled by reducing the
spatial dimension by a factor of 2 and projected to the latent space with the feature dimension of dl.

At each time step t, the decoder takes the latent variables zt
acc and zt

adv as well as the static variable m as inputs and
generates the dynamic states St

n and pt as outputs (Figure B1). First, the latent variables from the processor layer
are projected back to the original dimension D through the upsampling layers. Second, the inputs to the decoder
are projected to the space with the dimension of dd1 for each grid block. The projected features are then fused
together to be the variable zt through addition and concatenation. The role of the input m here is to remove the
effect of static variables, Tm and IPV , that are coupled in the latent variable zt

adv. Then, the dynamic variable
xt = {pt,St

n} is learned from the latent variable zt through two Conv3D layers with the dimension of output
channels to be dd2 and dd3, respectively.

B2. Hyperparameters of Deep Learning Models

The hyperparameters of deep learning models, including our proposed model and the modified Recurrent R‐U‐
Net are summarized in Tables B1 and B2. Both two models consist of approximately 3 million trainable
parameters.

Figure B1. Illustration of the architecture of the decoder.
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B3. Configuration of Training

The training in this study employs the Adam optimizer as the chosen optimization algorithm, with the decay of the
learning rate implemented gradually. Specifically, the learning rate decreases progressively over every step size
of training samples by being multiplied by the decay factor. Further details about the optimization hyper-
parameters can be found in Table B3. The number of samples used for training, validation, and test sets for all
models and experiments are tabulated in Table B4. All experiments are implemented using PyTorch (Paszke
et al., 2019) and conducted on a single NVIDIA A100 40 GB GPU. Summaries of model efficiency comparison
and the input configuration are presented in Tables B5 and B6, respectively. As shown in the input configuration,
the first dimension of three variables denotes the batch size of 1. The second and third dimensions of the control
variable are the number of time steps of the prediction horizon during training and the number of components
(water and CO2), respectively. The second dimension of the dynamic variable denotes the number of dynamic
variables including pressure and saturation. The second dimension of static variable represents the number of
static variables, including the inverse of grid volume, depth, and transmissibility of six faces over x‐, y‐, and z‐
directions for a structured grid system. The dimension 128 × 128 × 20 represents the grid sizes of the reservoir
over three directions.

Table B1
Hyperparameters of Each Module of the Proposed Model: Encoder, Processor, and Decoder

Module Hyperparameters Value Range

Encoder Physical Operator Dimension, do 40 {10, 20, 30, 40}

Hidden Dimension, dh 16 {8, 12, 16, 20}

Latent Dimension, dl 32 {24, 32, 48}

Processor Dimension of Residual Feature, dr 48 {32, 48, 64}

Number of Residual Layers, Nrl 3 {2, 3, 4}

Decoder Dimension of the 1st Layer, dd1 16 {8, 16, 32}

Dimension of the 2nd Layer, dd2 8 {4, 8, 12, 16}

Dimension of the 3rd Layer, dd3 4 {4, 6, 8}

Note. The third column denotes the selected values of hyperparameters. The last column denotes the feasible range of the
hyperparameters.

Table B2
Hyperparameters of Modified Recurrent R‐U‐Net

Hyperparameter Selected size

Channels [16, 32, 64]

# of Groups for GroupNorm Layer 4

Table B3
Hyperparameters for the Training of Our Model and RUNET in All Experiments

Hyperparameter Value

Batch Size 2

Learning Rate 1e− 4

Step Size 4,500

Decay Factor 0.9

Gradient Clipping 40
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Appendix C: Numerical Simulation Model and Data Generation
In this section, we describe the numerical simulation model used to generate the training and test data for the
described physics‐encoded DL model for predicting the spatial‐temporal evolution of the pressure and saturation
for subsurface CO2 storage. Figure C1 shows a synthetic 3D two‐phase flow simulation model constructed using

Table B4
The Numbers of Samples Used for Training, Validating, and Testing all Models in Three Experiments

Experiment Training Validate Test

Exp 1 (Public Data set) 200, 500, 1,000, 1,500, 2,000, 2,500 50 373

Exp 1 (Our Data set) 700 100 200

Exp 2 700 100 200

Table B5
Comparison of Model Efficiency

Model Parameter (million) Runtime (s/iter)

Ours 3.3951 0.2238

RUNET 3.0371 0.4201

ConvEnc 3.5225 0.4012

Note. ConvEnc refers to the model sharing the same architecture as the proposed DL model except the encoder is the
convolutional encoder.

Table B6
Input Size Used for the Comparison of Model Efficiency

Input variable Input size

Control Variable 1 × 8 × 2 × 128 × 128 × 20

Dynamic Variable 1 × 2 × 128 × 128 × 20

Static Variable 1 × 8 × 128 × 128 × 20

Figure C1. Numerical simulation model of 3D deep saline aquifer reservoir.

Water Resources Research 10.1029/2024WR037953

QIN ET AL. 27 of 33

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
037953 by Z

hen Q
in - U

niversity O
f Southern C

alifornia , W
iley O

nline L
ibrary on [12/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CMG‐GEM (Computer Modeling Group (CMG), 2019). The storage reservoir region is encompassed by an
aquifer region used to allow pressure dissipation and minimize the effects of no‐flow boundaries. The zero‐flux
boundary conditions are imposed on the reservoir boundaries. The storage reservoir is at a depth of 1,000 mwith a
vertical grid dimension of 20 grid blocks × 2.5 m and a horizontal grid dimension of 120 grid blocks × 50 m,
resulting in a total grid number of 288,000. The aquifer region is situated at the same depth and exhibits identical
vertical and horizontal resolutions for the middle section as the storage reservoir. The two sides of the horizontal
resolutions of the aquifer region are coarsened to 4 grid blocks × 500 m to reduce computational cost. The total
grid number of the entire simulation model is 327,680. The reservoir region has heterogeneous permeability
values ranging from 0.1 to 2,000 mD. Table C1 summarizes the simulation model settings. The injection spans
15 years, followed by a monitoring period of 85 years without CO2 injection.

In this paper, we assume an isothermal environment for the CO2 injection and storage processes. Various trapping
mechanisms of CO2 storage, including geologic, residual, and solubility trapping (Blunt, 2010), are considered in
the simulation model. We use the Brooks‐Corey relative permeability model (Brooks, 1965) with n = 2 to
calculate the CO2‐water relative permeability. The maximum residual gas saturation (Sgrmax) is set to be 0.4. The
capillary pressure for the sand‐CO2‐brine system is referred to Plug and Bruining (2007) of the drainage capillary
pressure curve for supercritical CO2 at 40°C. The gas density is calculated with the Peng‐Robinson EoS (Peng &
Robinson, 1976). The gas viscosity is calculated from the Jossi, Stiel and Thodos correlation (Poling et al., 2001).
The density and viscosity of the aqueous phase are calculated from the Rowe and Chou correlation (Rowe &
Chou, 1970) and the Kestin correlation (Kestin et al., 1981), respectively.

Uncertainties in the geologic properties of storage reservoirs, particularly in CO2 sequestration sites such as saline
aquifers, arise due to limited understanding and measurement of geologic representation at various scales
(Ma, 2011). These uncertainties stem from factors such as reservoir heterogeneity, anisotropy, and lateral vari-
ation resulting from uncertain rock composition, texture, pore structure, and rock type, which can influence the
stress state and strength differences within the rocks (Middleton et al., 2012). Consequently, geomechanical
properties become uncertain, affecting the capacity and costs of CO2 storage in carbon capture and storage
systems during pre‐injection, injection, and post‐injection periods (Anderson, 2017). To enhance the robustness
of the developed deep learning model and effectively address geologic uncertainty, we employ sampling tech-
niques and ensemble representations. These techniques allow us to incorporate varying levels of heterogeneity
range and generate multiple realizations of the permeability map. We utilize sequential Gaussian simulation with
the Stanford Geostatistical Modeling Software (Remy et al., 2009) for this purpose. The geometric anisotropy is
characterized by a spherical variogram model where the maximum (x‐direction) and medium (y‐direction)
ellipsoid ranges are set isotropically with three distinct scenarios of 20, 60, and 100 units. The minimum ellipsoid
range is represented by two distinct scenarios, namely 2 and 5 units. Consequently, a comprehensive set of six
scenarios, each featuring different ellipsoid ranges, is utilized to generate a total of 100 realizations per scenario,
thereby resulting in a total of 600 realizations of the 3D permeability maps. Figure C2 shows the permeability
maps of the first four realizations from each of the six distinct scenarios.

Given each realization of the permeability map, the simulation data is generated based on various cases of well
injection schedules. The well location is fixed at 64,64,17 for the one‐well scenario and the well indices of the
two‐well scenario are fixed at {55,55,17} and {75,75,17}. The total CO2 injection volume, Vinj

TCO2
, over 15 years

Table C1
Numerical Simulation Model Settings

Reservoir region Aquifer region

Grid numbers × Grid size (meter) in x and y 120 × 50 8 × 500

Grid numbers × Grid size (meter) in z 20 × 2.5 20 × 2.5

Permeability (mD) 0.1 − 2000 200

Porosity 0.18 0.18

Pore pressure gradient (kPa/m) 9.8 9.8

kv/ kh 0.1 0.1

Temperature (°C) (isothermal condition) 40 40
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of injection is fixed to be 3.5e + 09 m3 (∼10 mtCO2) for both one‐well and two‐well scenarios. To ensure
comprehensive coverage of the realistic response space, we divide the injection duration into three intervals, each
spanning 5 years. We assign each interval with an injection volume, Vintervalx, with one of Vhigh, Vmed, or Vlow,
where Vhigh = 0.5Vinj

TCO2
, Vmed = 0.35Vinj

TCO2
, and Vlow = 0.15Vinj

TCO2
. We then create 10 different combinations of

those injection volumes as shown in Table C2 and Figure C3a. The injection rate, u (m3/day) , changes every
year, andU = {ut1 ,ut2 ,… ,utk } where k = 15. We randomly assign a portion of the injection volume to each year
based on its corresponding interval. Let

p = rand(1,5) = [p1,p2,p3,p4,p5], (C1)

and injection rate u at time ti is calculated by

uti =
pi

sum( p)
Vintervalx
365

, (C2)

where pi corresponds to the same injection interval x where uti belongs to.

Figure C3b shows an example of random injection rate allocation based on total injection allocation in
Figure C3a. In this way, a total of 6,000 simulation runs are performed and the spatial and temporal results of

Figure C2. The 3D Permeability maps of the first four realizations from each of the six scenarios with distinct ellipsoid
ranges.
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Table C2
Ten Combinations of the Percentage Injection Volume for Each Interval

Vinterval1 Vinterval2 Vinterval3

Combination 1 Vhigh Vmed Vlow

Combination 2 Vhigh Vlow Vmed

Combination 3 Vmed Vhigh Vlow

Combination 4 Vmed Vlow Vhigh

Combination 5 Vlow Vhigh Vmed

Combination 6 Vlow Vmed Vhigh

Combination 7 Vavg Vavg Vavg

Combination 8 Vhigh 0 Vhigh

Combination 9 Vhigh Vhigh 0

Combination 10 0 Vhigh Vhigh

Note. Vhigh, Vmed , Vlow, and Vavg correspond to 50%, 35%, 15%, and 33.33% of the total injection volume, respectively.

Figure C3. Ten combinations of the percentage injection volume for each interval. (a) Total injection volume allocation for each interval. (b) an example of random
injection rate allocation based on total injection allocation on (a).
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pressure and gas saturation are generated. The described data generation approach maximizes our ability to
explore a wide range of injection rate combinations.

For the two‐well scenario, the injection rate is distributed into two wells with specific portions:

[uti
w1
,uti

w2
] = uti [qi, 1 − qi], (C3)

where qi is the percentage of injection amount assigned to well 1, (1 − qi) is the percentage of injection amount
assigned to well 2, and q = [0.1 : 0.1 : 1] for a total of 10 injection schedules for each permeability realization.

Data Availability Statement
The data, codes, and examples used in this study have been uploaded to the FAIR‐compliant Zenodo online
repository (link: https://zenodo.org/records/14594842) as well as our research website at http://sees.usc.edu.
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